Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-dksz7 Total loading time: 0.152 Render date: 2021-08-04T23:06:44.360Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Measurement of the carbon 14 activity at natural level in air samples

Published online by Cambridge University Press:  17 June 2005

A. Olivier
Affiliation:
Marine Nationale, École des Applications Militaires de l'Énergie Atomique, Département Groupe d'Études Atomiques, BP. 19, 50115 Cherbourg Armées, France
L. Tenailleau
Affiliation:
Marine Nationale, École des Applications Militaires de l'Énergie Atomique, Département Groupe d'Études Atomiques, BP. 19, 50115 Cherbourg Armées, France
Y. Baron
Affiliation:
Marine Nationale, École des Applications Militaires de l'Énergie Atomique, Département Groupe d'Études Atomiques, BP. 19, 50115 Cherbourg Armées, France
D. Maro
Affiliation:
Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Radioécologie de Cherbourg-Octeville, 50130 Cherbourg-Octeville, France
M. Fontugne
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, UMR 1572-CEA/CNRS, Domaine du CNRS, 91198 Gif-sur-Yvette, France
Get access

Abstract

The aim of the study was to measure the carbon 14 activity at natural level in air samples using classical methods of radiochemistry and beta counting. Three different methods have been tested in order to minimise the detection limit. In the three methods, the first step consists in trapping the atmospheric carbon 14 into NaOH (1N) using a bubbling chamber. The atmospheric carbon dioxide reacts with NaOH to form Na2CO3. In the first method the Na2CO3 solution is mixed with a liquid scintillate and is directly analysed by liquid scintillation counting (LSC). The detection limit is approximately 0.3 Bq.m-3 of air samples. The second method consists in evaporating the carbonate solution and then counting the solid residue with a proportional gas circulation counter. The detection limit obtained is equivalent to the first method (0.36 Bq.m-3 of air samples). In the third method, Na2CO3 is precipitated into CaCO3 in presence of CaCl2. CaCO3 is then analysed by LSC. This method appears to be the most appropriate, the detection limit is 0.04 Bq.m-3 of air samples.

Type
Research Article
Copyright
© EDP Sciences, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Measurement of the carbon 14 activity at natural level in air samples
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Measurement of the carbon 14 activity at natural level in air samples
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Measurement of the carbon 14 activity at natural level in air samples
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *