Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-22T01:43:20.883Z Has data issue: false hasContentIssue false

The Use of Carbon Isotopes (13C,14C) in Soil to Evaluate Vegetation Changes During the Holocene in Central Brazil

Published online by Cambridge University Press:  18 July 2016

L. C. R. Pessenda
Affiliation:
Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, 13400-970 Piracicaba, São Paulo, Brazil
Ramon Aravena
Affiliation:
Waterloo Center for Groundwater Research, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
A. J. Melfi
Affiliation:
Instituto Astronômico e Geofísico/NUPEGEL, Universidade de São Paulo, 01065-70, São Paulo, SP, Brazil
E. C. C. Telles
Affiliation:
Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, 13400-970 Piracicaba, São Paulo, Brazil
René Boulet
Affiliation:
Instituto de Geociências, Universidade de São Paulo, 05508-900 São Paulo, SP, Brazil
E. P. E. Valencia
Affiliation:
Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, 13400-970 Piracicaba, São Paulo, Brazil
Mario Tomazello
Affiliation:
Escola Superior de Agricultura Luiz de Queiróz, Universidade de São Paulo, 13418-260, Piracicaba, SP, Brazil
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper presents carbon isotope data measured in three soil profiles from the Salitre area, Central Brazil. The study forms part of a research project on tropical and subtropical soils in Brazil, in which the main objective is to use carbon isotopes to provide information about vegetation changes that have occurred in relation to climate changes during the Holocene. 14C data from charcoal samples and soil organic matter (SOM) indicate that the organic matter in the soils studied is of Holocene age at least. Furthermore, the presence of a significant amount of charcoal in the soils suggests that forest fire was a significant ocurrence during the Holocene and probably had an important role in determining the dynamics of forest vegetation in the study area. Correspondingly, 13C data indicate that C3 plants provided the dominant vegetation of the study area, even during the dry periods when savanna vegetation is supposed to have replaced the forest communities. This study contributes to our better understanding of the relation between climatic changes and vegetation in the subtropical region of Brazil.

Type
14C and Soil Dynamics: Special Section
Copyright
Copyright © The American Journal of Science 

References

Ab'Saber, A. N. 1977 Espaços ocupados pela expansão dos climas secos na América do Sul, por ocasião dos períodos glaciais quaternários. Paleoclimas (São Paulo) 3:120.Google Scholar
Ab'Saber, A. N. 1982 The paleoclimate and paleoecology of Brazilian Amazonia. In Prance, G. T., ed., Biological Diversification in the Tropics. New York, Columbia University Press: 4159.Google Scholar
Absy, M. L. 1982 Quaternary palynological studies in the Amazon Basin. In Prance, G. T., ed., Biological Diversification in the Tropics. New York, Columbia University Press: 6773 Google Scholar
Absy, M. L., Cleef, A., Fournier, M., Servant, M., Siffedine, A., Silva, M. F. F., Suguio, K., Turcq, B. and Van der Hammen, T. 1991 Mise en évidence de quatre phases d'ouverture de la forět dense dans le sud-est de l'Amazonie au cours des 6000 dernières années. Première comparaison avec d'autres régions tropicales. Compte Rendus de l'Académie des Sciences. 2nd series, 312: 673678.Google Scholar
Anderson, D. W. and Paul, E. A., 1984 Organo-mineral complexes and their study by radiocarbon dating. Soil Science Society of America Journal 48: 298301.Google Scholar
Aravena, R., Warner, B. G., MacDonald, G. M. and Hanf, K. I. 1992 Carbon isotope composition of lake sediments in relation to lake productivity and radiocarbon dating. Quaternary Research 37: 333345.Google Scholar
Becker-Heidmann, P. and Scharpenseel, H. W. 1989 Carbon isotope dynamics in some tropical soils. In Long, A. and Kra, R. S., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 672679.Google Scholar
Becker-Heidmann, P. and Scharpenseel, H. W. 1992 The use of natural 14C and 13C in soils for studies on global climate change. In Long, A. and Kra, R. S., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 34(3): 535540.Google Scholar
Bigarella, J. J. 1971 Variações climáticas no Quaternário Superior do Brasil e sua datação radiométrica pelo método do carbono 14. Instituto de Geografia-Universidade de São Paulo. Paleoclimas 1:1–22.Google Scholar
Bigarella, J. J. and de Andrade-Lima, D. 1982 Paleoenvironmental changes in Brazil. In Prance, G. T., ed., Biological Diversification in the Tropics. New York, Columbia University Press: 2740.Google Scholar
Boulet, R., Pessenda, L. C. R., Telles, E. C. C. and Melfi, A. J. 1995 Une évaluation de l'accumulation superficielle de matière par la fauna du sol à partir de la datation des charbons et de l'humine du sol. Exemple des latosols des versants du lac Campestre, Salitre, Minas Gerais, Brésil. Comptes Rendus de l'Académie des Sciences de Paris. 2nd series, 312: 287294.Google Scholar
Boutton, T. W. 1991 Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine and freshwater environments. In Coleman, D. C. and Fry, B., eds., Carbon Isotope Techniques. San Diego, Academic Press: 173185.Google Scholar
Cerling, T. E. 1984 The stable isotopic composition of modern soil carbonate and its relation to climate. Earth and Planetary Science Letters 71: 229240.CrossRefGoogle Scholar
Cerri, C. C., Feller, C., Balesdent, J. Victoria, R. and Plenecassagne, A. 1985 Application du traçage isotopique naturel en 13C, a l'étude de la dynamique de la matière organique dans les sols. Comptes Rendus de l'Académie des Sciences de Paris 2nd series, 300: 423428.Google Scholar
Dabin, B. 1971 Etude d'une méthode d'extraction de la matière humique du sol. Science du Sol 1:47–63.Google Scholar
Dzurec, R. S., Boutton, T. W., Caldwell, M. M. and Smith, B. N. 1985 Carbon isotope ratios of soil organic matter and their use in assessing community composition changes in Curlew Valley, Utah. Oecologia 66: 1724.Google Scholar
Fairbridge, R. W. 1976 Shellfish-eating preceramic Indians in coastal Brazil. Science 191: 353359.Google Scholar
Gentry, A. H. 1982 Phytogeography patterns as evidence for a Chocó refuge. In Prance, G. T., ed., Biological Diversification in the Tropics. New York, Columbia University Press: 112135.Google Scholar
Goh, K. M. and Molloy, B. P. J. 1978 Radiocarbon dating of paleosols using organic matter components. Journal of Soil Science 29(4): 567573.Google Scholar
Haffer, J. 1969 Speciation in Amazonian forest birds. Science 165: 131137.Google Scholar
Hendy, C. H., Rafter, T. A., MacIntosh, N. W. G. 1972 The formation of carbonate nodules in the soils of the Darling Downs, Queensland, Australia, and the dating of the Talgai cranium. In Rafter, T. A. and Grant-Taylor, T., eds., Proceedings of the 8th International 14C Conference, Wellington, Royal Society of New Zealand: D106D126.Google Scholar
Hollander, D. J., McKenzie, J. A. and Haven, H. L. 1992 A 200 year sedimentary record of eutrophication in Lake Greifen (Switzerland): Implications for the origin of organic-carbon rich sediments. Geologia 20: 825828.Google Scholar
Korner, Ch., Farquhar, G. D. and Roksandic, C. 1988 A global survey of carbon isotope discrimination in plants from high altitude. Oecologia 74: 623632.Google Scholar
Krishnamurthy, R. V., DeNiro, M. J. and Pant, R. K. 1982 Isotope evidence for Pleistocene climatic changes in Kashmir, India. Nature 298: 640641.Google Scholar
Ledru, M. P. 1993 Late Quaternary environmental and climatic changes in Central Brazil. Quaternary Research 39: 9098.Google Scholar
Martinelli, L. A., Pessenda, L. C. R., Valencia, E. P. E., Camargo, P. B., Telles, E. C. C., Cerri, C. C., Aravena, R., Victoria, R. L., Richey, J. E. and Trumbore, S. 1996 Carbon-13 variation with depth in soils of Brazil and climate change during the Quaternary. Oecologia 106: 376381.CrossRefGoogle ScholarPubMed
Miklos, A. A. W. (ms.) 1992 Biodynamique d'une couverture pédologique dans la région de Botucatu (Brésil – SP). Ph. D dissertation, University of Paris: 247 p.Google Scholar
Nadelhoffer, K. J. and Fry, B. 1988 Controls on natural nitrogen-15 and carbon-13 abundance in forest soil organic matter. Soil Science Society of America Journal 52: 16331640.Google Scholar
Oliveira, J. B., Menk, J. F. R. and Rota, C. L. 1985 Solos do parque estadual de Campos do Jordão. Silvicultura em São Paulo. Revista do Instituto Florestal 9: 125155.Google Scholar
Pessenda, L. C. R. and Camargo, P. B. 1991 Datação radiocarbǒnica de amostras de interesse arqueológico e geológico por espectrometria de cintilação líquida de baixa radiaçõo de fundo. Química Nova 14(2): 98103.Google Scholar
Pessenda, L. C. R., Valencia, E. P. E., Camargo, P. B., Telles, E. C. C., Martinelli, L. A., Cerri, C. C., Aravena, R. and Rozanski, K., 1995 Natural radiocarbon measurements in Brazilian soils developed on basic rocks. Radiocarbon, this issue.Google Scholar
Prance, G. T. 1973 Phytogeographic support for the theory of Pleistocene forest refuges in the Amazon basin, based on evidence from distribution patterns in Caryocaraceae, Chrysobanaceae, Dichapetalaceae and Lecythidaceae. Acta Amazonica 3(3): 528.Google Scholar
Saldarriaga, J. G. and West, D. C. 1986 Holocene fires in the northern Amazon basin. Quaternary Research 26: 358366.Google Scholar
Schwartz, D., Mariotti, A., Lanfranchi, R. and Guillet, B. 1986 13C/12C ratios of soil organic matter as indicators of vegetation changes in the Congo. Geoderma 39: 97103.Google Scholar
Servant, M., Fontes, J.-C., Rieu, M. and Saliège, X. 1981 Phases climatiques arides holocènes dans le sud-ouest de l'Amazonie (Bolivie). Comptes Rendus de l'Académie des Sciences de Paris. 2nd series, 292: 12951297.Google Scholar
Soubies, F. 1980 Existence d'une phase sèche en Amazonie brésilienne datée par la présence de charbons dans le sols (6000–3000 ans B. P.). Cahier ORSTOM série Géologie 11 (1): 133–148.Google Scholar
Stout, J. D., Rafter, T. A., Throughton, J. H. 1975 The possible significance of isotopic ratios in paleoecology. In Suggate, R. P. and Cresswell, M. M., eds., Quaternary Studies. Wellington, Royal Society of New Zealand, 279286.Google Scholar
Stuiver, M. and Polach, H. A. 1977 Discussion: Reporting of 14C data. Radiocarbon 19(3): 355363.Google Scholar
Throughton, J. H., Stout, J. D. and Rafter, T. 1974 Long-term stability of plant communities. Carnegie Institute of Washington Yearbook 73:838–845.Google Scholar
Tieszen, L. L., Snyimba, M. M., Imbamba, S. K. and Throughton, J. H. 1979 The distribution of C3 and 4 grasses and carbon isotope discrimination along an attitudinal and moisture gradient in Kenya. Oecologia 37: 337350.Google Scholar
van der Hammen, 1982 Paleoecology of tropical South America. In Prance, G. T., ed., Biological Diversification in the Tropics. New York, Columbia University Press: 6066.Google Scholar