Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-07T01:37:09.322Z Has data issue: false hasContentIssue false

Radiocarbon Dating of Dolomitic Mortars from the Convent Saint John, Müstair (Switzerland): First Results

Published online by Cambridge University Press:  02 June 2020

Marta Caroselli*
Affiliation:
University of Applied Arts and Sciences of Southern Switzerland (SUPSI), Institute of Materials and Construction (IMC), Switzerland
Irka Hajdas
Affiliation:
ETH, Laboratory of Ion Beam Physics, Zurich, Switzerland
Patrick Cassitti
Affiliation:
Foundation Pro-Kloister Müstair (FM), Switzerland
*
*Corresponding author. Email: marta.caroselli@supsi.ch.

Abstract

The monastery of St. John in Müstair, a UNESCO world heritage site, preserves archaeological remains and stone structures dated from the 8th century to the present. It has been extensively studied archaeologically so that numerous samples of historical materials, including mortar, are available for study. In addition to that, some of the structures have been precisely dated with dendrochronology. The monastery is located in a region characterized by dolomite rocks and the mortars are therefore of dolomitic nature, being perfectly suited to test the possibility of being dated with 14C. Furthermore, the presence of embedded carbon fragments has provided additional independent data to support or deny the results of mortar dating. A comparison of the results obtained from radiocarbon (14C) dating of bulk mortars, sieved fractions enriched in binder, lime lumps and carbon fragments, for two samples is presented, in relation to the petrographic characterization and the mineralogical phase content. This preliminary study shows that the dating of 14C can potentially be applied to the mortar of Müstair, as results in accordance with the established chronologies have been obtained for one sample. However, if the dolomitic sand contamination is very high, further studies are needed to develop a specific sample preparation technique.

Type
Research Article
Copyright
© 2020 by the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the Mortar Dating International Meeting, Pessac, France, 25–27 Oct. 2018

References

Altomare, A, Corriero, N, Cuocci, C, Falcicchio, A, Moliterni, A, Rizzi, R. 2015. QualX2.0: a qualitative phase analysis software using the freely available database POW_COD. Journal of Applied Crystallography 48:598603.CrossRefGoogle Scholar
Caroselli, M, Bläuer, C, Cassitti, P, Cavallo, G, Hajdas, I, Hueglin, S, Neukom, H, Jornet, A. 2019. Insights into Carolingian construction techniques – results from archaeological and mineralogical studies at Müstair Monastery, Grisons, Switzerland. Proceedings of the 5th Historic Mortars Conference – HMC2019:743–757.Google Scholar
Cavallo, G, Caroselli, M, Jornet, A, Cassitti, P. 2019. Preliminary research on potential raw material sources for dolomitic lime mortars at St. John’s convent at Müstair, Switzerland. Proceedings of the 5th Historic Mortars Conference – HMC2019:628–641.Google Scholar
Descoeudres, G. 2007. Herrenhäuser aus Holz. Eine mittelalterliche Wohnbaugruppe in der Innerschweiz. Schweizer Beiträge zur Kulturgeschichte und Archäologie des Mittelalters, Bd. 34. Schweizerischer Burgenverein, Basel.Google Scholar
Diekamp, A, Konzett, J, Mirwald, PW. 2009. Magnesian lime mortars—identification of magnesiumphases in medieval mortars and plasters with imaging techniques. In: Middendorf B, Just A, Klein D, Glaubitt A, Simon J, editors. Proceedings of the 12th Euroseminar on Microscopy Applied to Building Materials, 15–19.09.2009. Dortmund, Germany:309–17.Google Scholar
Elsen, J. 2006. Microscopy of historic mortars—a review. Cement and Concrete Research 36(8):14161424.CrossRefGoogle Scholar
Folk, RL, Valastro, S. 1976. Successful technique for dating of lime mortar by carbon-14. Journal of Field Archaeology 3(2):195201.CrossRefGoogle Scholar
Goll, J, Exner, M, Hirsch, S. 2007. Müstair. Die mittelalterlichen Wandbilder in der Klosterkirche. Zürich: Verlag Neue Zürcher Zeitung.Google Scholar
Grabherr, G. 2006. Die Via Claudia Augusta in Nordtirol − Methode, Verlauf, Funde. In: Walde, E, Grabherr, G, editors. Via Claudia Augusta und Römerstraßenforschung im östlichen Alpenraum. Ikarus 1. Innsbruck: Innsbruck University Press. p. 36336.Google Scholar
Gražulis, S, Chateigner, D, Downs, RT, Yokochi, AF, Qiurós, M, Lutterotti, L, Manakova, E, Butkus, J, Moeck, P, Le Bail, A. 2009. Crystallography Open Database – an open-access collection of crystal structures. Journal of Applied Crystallography 42(4):726729.10.1107/S0021889809016690CrossRefGoogle ScholarPubMed
Hajdas, I, Trumm, J, Bonani, G, Biechele, C, Maurer, M, Wacker, L. 2012. Roman ruins as an experiment for radiocarbon dating of mortar. Radiocarbon 54(3–4):897903.10.1017/S0033822200047548CrossRefGoogle Scholar
Hajdas, I, Lindroos, A, Heinemeier, J, Ringbom, Å, Marzaioli, F, Terrasi, F, Passariello, I, Capano, M, Artioli, G, Addis, A, Secco, M, Michalska, D, Czernik, J, Goslar, T, Hayen, R, Van Strydonck, M, Fontaine, L, Boudin, M, Maspero, F, Panzeri, L, Galli, A, Urbanova, P, Guibert, P. 2017. Preparation and dating of mortar samples –Mortar Dating Inter-Comparison Study (MODIS). Radiocarbon 59(6):18451858.CrossRefGoogle Scholar
Hajdas, I, Maurer, M, Röttig, MB. 2020. Development of 14C dating of mortars at ETH Zurich. Radiocarbon 62. This issue.10.1017/RDC.2020.40CrossRefGoogle Scholar
Heinemeier, J, Ringbom, A, Lindroos, A, Sveinbjornsdottir, AE. 2010. Successful AMS 14C dating of non-hydraulic lime mortars from the Medieval churches of the Aland Islands, Finland. Radiocarbon 52:171204.10.1017/S0033822200045124CrossRefGoogle Scholar
Hodges, R. 1993. San Vincenzo al Volturno 1, Archaeological Monographies of the British School at Rome 7. London: British School at Rome.Google Scholar
Hurni, JP, Orcel, C, Tercier, J. 2007. Zu den dendrochronologischen Untersuchungen von Hölzern aus St. Johann in Müstair. In: Sennhauser, HR, editor. Müstair Kloster St. Johann 4. Naturwissenschaftliche und technische Beiträge. Zürich: vdf Hochschulverlag. p. 99116.Google Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Braskén, M, Sveinbjörnsdóttir, Á. 2007. Mortar dating using AMS 14C and sequential dissolution: examples from medieval, non-hydraulic lime mortars from the Åland Islands, SW Finland. Radiocarbon 49(1):4767.CrossRefGoogle Scholar
Lindroos, A, Ringbom, Å, Heinemeier, J, Hodgins, G, Sonck-Koota, P, Sjöberg, P, Lancaster, L, Kaisti, R, Brock, F, Ranta, H, Caroselli, M, Lugli, S. 2018. Radiocarbon dating historical mortars: lime lumps or/and binder carbonate? Radiocarbon 60(3):875899.10.1017/RDC.2018.17CrossRefGoogle Scholar
Lubritto, C, Caroselli, M, Lugli, S, Marzaioli, F, Nonni, S, Marchetti Dori, S, Terrasi, F. 2015. AMS radiocarbon dating of mortar: The case study of the medieval UNESCO site of Modena. Nuclear Instruments and Methods in Physics Research B 361:614619.Google Scholar
Michalska, D, Czernik, J, Gosar, T. 2017. Methodological aspect of mortars dating (Poznań, Poland, MODIS). Radiocarbon 59(6):18911906.10.1017/RDC.2017.128CrossRefGoogle Scholar
Railsback, LB. 2006. Solubility of common carbonate minerals. In: Some fundamentals of mineralogy and geochemistry. Online book. Available at www.gly.uga.edu/railsback.Google Scholar
Ramsey, CB, Lee, S. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55:720730.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Ramsey, CB, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatte, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, and van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:18691887.10.2458/azu_js_rc.55.16947CrossRefGoogle Scholar
Ruff, M, Szidat, S, Gaggeler, HW, Suter, M, Synal, HA, Wacker, L. 2010. Gaseous radiocarbon measurements of small samples. Nuclear Instruments and Methods in Physics Research B 268:790794.10.1016/j.nimb.2009.10.032CrossRefGoogle Scholar
Sennhauser, HR, Courvoisier, HR. 1996. Die Klosterbauten – eine Übersicht. In: Sennhauser, HR, editor. Müstair, Kloster St. Johann. Bd. 1: Zur Klosteranlage. Vorklösterliche Befunde. Vdf, Zürich. p. 1565.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: Reporting of 14C data. Radiocarbon 19(3):355363.10.1017/S0033822200003672CrossRefGoogle Scholar
Synal, HA, Stocker, M, Suter, M. 2007. MICADAS: A new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research B 259:713.10.1016/j.nimb.2007.01.138CrossRefGoogle Scholar
Wacker, L, Güttler, D, Goll, J, Hurni, JP, Synal, HA, Walti, N. 2014. Radiocarbon dating to a single year by means of rapid atmospheric 14C changes. Radiocarbon 56(2):73579.CrossRefGoogle Scholar
Warren, J. 2000. Dolomite: occurrence, evolution and economically important associations. Earth-Science Reviews 52(1–3):181.10.1016/S0012-8252(00)00022-2CrossRefGoogle Scholar
Zettler, A. 1988. Die frühen Klosterbauten der Reichenau. Thorbecke, Sigmaringen.Google Scholar