Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-19T07:40:08.378Z Has data issue: false hasContentIssue false

Oceanic Radiocarbon and Tritium On A Transect Between Australia and Bali (Eastern Indian Ocean)

Published online by Cambridge University Press:  18 July 2016

Viviane Leboucher
Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA-CNRS, CEA/Saclay, F91191-Gif/Yvette cedex, France
Philippe Jean-Baptiste*
Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA-CNRS, CEA/Saclay, F91191-Gif/Yvette cedex, France
Elise Fourré
Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA-CNRS, CEA/Saclay, F91191-Gif/Yvette cedex, France
Maurice Arnold
Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA-CNRS, CEA/Saclay, F91191-Gif/Yvette cedex, France
Michèle Fieux
Laboratoire d'Océanographie Dynamique et de Climatologie, Université Paris VI, F75252 - Paris cedex 05, France
Corresponding author. Email:
Rights & Permissions [Opens in a new window]


Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Results are presented of radiocarbon and tritium measurements along a transect between the Australian continental shelf and the Indonesian coast of Bali. The stations lie in the easternmost part of the Indian Ocean, close to the sills over which the Indonesian throughflow (ITF) makes its way to the Indian Ocean. The present data, obtained as part of the Java-Australia Dynamics Experiment (JADE) in August 1989, complement the WOCE 14C and tritium data set on both sides of the Indonesian archipelago and give us the opportunity to discuss the origin of the water masses and timescale of the throughflow. Both tracers point to a north equatorial Pacific origin of the waters. The comparison of the tritium inventories in the Pacific North Equatorial Current and along the JADE transect suggests a minimum transit time of the waters across the Indonesian seaways of the order of 5 to 6 yr, corresponding to a throughflow <18 × 106 m3/s.

Part II
Copyright © The Arizona Board of Regents on behalf of the University of Arizona 


Bard, E, Arnold, M, Maurice, P, Duplessy, JC. 1987. Measurements of bomb radiocarbon in the ocean by means of accelerator mass spectrometry: technical aspects. Nuclear Instruments and Methods in Physics Research B 29:297301.Google Scholar
Broecker, WS, Peng, TH, Östlund, G, Stuiver, M. 1985. The distribution of bomb radiocarbon in the ocean. Journal of Geophysical Research 90:6953–70.CrossRefGoogle Scholar
Broecker, WS, Patzert, WC, Toggweiler, JR, Stuiver, M. 1986a. Hydrography, chemistry and radioisotopes in the Southeast Asian basins. Journal of Geophysical Research 91:14, 345–54.Google Scholar
Broecker, WS, Peng, TH, Östlund, G. 1986b. The distribution of bomb tritium in the ocean. Journal of Geophysical Research 91:14, 331–44.Google Scholar
Broecker, WS, Sutherland, S, Smethie, W, Peng, TH, Östlund, G. 1995. Oceanic radiocarbon: separation of the natural and bomb components. Global Biogeochemical Cycles 9:263–88.CrossRefGoogle Scholar
Druffel, ERM. 1987. Bomb radiocarbon in the Pacific: annual and seasonal timescale variations. Journal of Marine Research 45:667–98.Google Scholar
Ffield, A, Gordon, AL. 1992. Vertical mixing in the Indonesian thermocline. Journal of Physical Oceanography 22:184–95.Google Scholar
Fieux, M, Andrié, C, Delecluse, P, Ilahude, AG, Kartavseff, A, Mantisi, F, Molcard, R, Swallow, JC. 1994. Measurements within the Pacific-Indian Oceans throughflow region. Deep-Sea Research 41:1091–130.Google Scholar
Fine, RA. 1985. Direct evidence using tritium data for throughflow from the Pacific into the Indian Ocean. Nature 315:478–80.Google Scholar
Fine, RA, Lukas, R, Bingham, FM, Warner, MJ, Gammon, RH. 1994. The western equatorial Pacific: a water mass crossroads. Journal of Geophysical Research 99: 25,06380.Google Scholar
GEBCO (General Bathymetric Chart of the Oceans, Department of Fisheries and Oceans). 1984. Canadian Hydrographic Chart Distribution Office, Canadian Government Publishing Center, Ottawa, Canada.Google Scholar
Gordon, AL. 1986. Interocean exchange of thermocline water. Journal of Geophysical Research 91:5037–46.Google Scholar
Gordon, AL, Fine, RA. 1996. Pathways of water between the Pacific and Indian Oceans in the Indonesian seas. Nature 379:146–9.Google Scholar
Gordon, AL, Giulivi, CF, Ilahude, AG. 2003. Deep topographic barriers within the Indonesian seas. Deep-Sea Research 50:2205–28.Google Scholar
Jean-Baptiste, P, Andrié, C, Lelu, M. 1989. Helium diffusion through glass. Glass Technology 30:228–30.Google Scholar
Jean-Baptiste, P, Mantisi, F, Dapoigny, A, Stievenard, M. 1992. Design and performance of a mass spectrometric facility for measuring helium isotopes in natural waters and for low-level tritium determination by the helium-3 ingrowth method. Applied Radiations and Isotopes 43:881–91.Google Scholar
Jean-Baptiste, P, Fieux, M, Dapoigny, A, Ilahude, AG. 1997. An eastern Indian Ocean 3He section from Australia to Bali: evidence for a deep Pacific-Indian throughflow. Geophysical Research Letters 24:2577–80.Google Scholar
Jenkins, WJ. 2002. World Ocean Circulation Experiment (WOCE) one-time cruises data [internet]. http:/ Scholar
Key, RM, Quay, P, Schlosser, P, McNichol, AP, Von Reden, KF, Schneider, RJ, Elder, KL, Stuiver, M, Ostlund, HG. 1996. WOCE radiocarbon IV: Pacific Ocean results; P10, P13N, P14C, P18, P19 & S4P. Radiocarbon 38(2):239392.Google Scholar
Kumamoto, Y, Murata, A, Saito, C, Honda, M, Kusakabe, M. 2002. Bomb radiocarbon invasion into the northwestern North Pacific. Deep-Sea Research II 49: 5339–51.Google Scholar
Leboucher, V, Orr, J, Jean-Baptiste, P, Arnold, M, Monfray, P, Tisnerat-Laborde, N, Poisson, A, Duplessy, JC. 1999. Oceanic radiocarbon between Antarctica and South Africa along WOCE section I6 at 30$dGE. Radiocarbon 41(1):5173.Google Scholar
McCartney, MS. 1982. The subtropical recirculation of mode waters. Journal of Marine Research 40:427–64.Google Scholar
Moore, MD, Schrag, DP, Kashgarian, M. 1997. Coral radiocarbon constraints on the source of the Indonesian throughflow. Journal of Geophysical Research 102: 12, 359–65.Google Scholar
Rubin, SI, Key, RM. 2002. Separating natural and bomb-produced radiocarbon in the ocean: the potential alkalinity method. Global Biogeochemical Cycles 16: 1105–24.CrossRefGoogle Scholar
Schlosser, P. 2002. World Ocean Circulation Experiment (WOCE) one-time cruises data [internet]. http:/ Scholar
Toggweiler, JR, Dixon, K, Bryan, K. 1989. Simulations of radiocarbon in a coarse-resolution world ocean model: distributions of bomb-produced carbon-14. Journal of Geophysical Research 94:8243–64.Google Scholar
Toole, JM, Millard, RC, Wang, Z, Pu, S. 1990. Observations of the Pacific north equatorial current bifurcation at the Philippines coast. Journal of Physical Oceanography 20:307–18.2.0.CO;2>CrossRefGoogle Scholar
Top, Z, Gordon, A, Jean-Baptiste, P, Fieux, M, Ilahude, AG, Muchtar, M. 1997. Helium-3 in Indonesians seas: inferences on deep pathways. Geophysical Research Letters 24:547–50.Google Scholar
Warren, BA. 1981. Transindian hydrographic section at Lat. 18$dGS: Property distributions and circulation in the South Indian Ocean. Deep-Sea Research 28:759–88.Google Scholar
Weiss, W, Roether, W. 1980. The rate of tritium input to the world oceans. Earth and Planetary Science Letters 49:435–46.Google Scholar