Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-30T16:25:26.316Z Has data issue: false hasContentIssue false

New Evidence for a Mid- to Late-Holocene Change in the Marine Reservoir Effect Across the South Pacific Gyre

Published online by Cambridge University Press:  20 September 2019

Fiona Petchey*
Affiliation:
Radiocarbon Dating Laboratory, Division of Health, Engineering, Computing and Science, University of Waikato, New Zealand ARC Centre of Excellence for Australian Biodiversity and Heritage, College of Arts, Society and Education, James Cook University, Cairns, QLD, Australia
*
Corresponding author. Email: fpetchey@waikato.ac.nz.

Abstract

Holocene climate change in the South Pacific is of major interest to archaeologists and Quaternary researchers. Regional surface ocean radiocarbon (14C) values are an established proxy for studying changing oceanographic and climatic conditions. Unfortunately, radiocarbon variability in the marine environment over the period of specific importance to human colonization of the remote Pacific islands—the last 3500 years—has been poorly studied. In order to build robust and accurate archaeological chronologies using shell, it is important to rectify this. In this paper, radiocarbon marine reservoir offsets (ΔR) are presented from eight archaeological sites, ranging in age from 350 cal BP to 3000 cal BP, and compared to coral datasets from the east Australian coastline. The results indicate that a significant decrease in the South Pacific Gyre ΔR occurred between 2600 and 2250 cal BP, most likely caused by changes in ocean circulation and climate. Accurately recording the timing of variability in reservoir offset is critical to untangling changes in society that took place in the Pacific, in particular, the development of Ancestral Polynesian Society.

Type
Research Article
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, MS, Wallace, R. 2007. New evidence from the East Polynesian gateway: Substantive and methodological results from Aitutaki, southern Cook Islands. Radiocarbon 49(3):117.CrossRefGoogle Scholar
Alves, EQ, Macario, KD, Urrutia, FP, Cardoso, RP, Ramsey, CB. 2019. Accounting for the marine reservoir effect in radiocarbon calibration. Quaternary Science Reviews 209:129138.CrossRefGoogle Scholar
Beesley, PL, Ross, GJB, Wells, A, editors. 1998. Mollusca: The Southern Synthesis. Fauna of Australia. Vol. 5. Melbourne: CSIRO Publishing. 1234 p.Google Scholar
Buüntgen, U, Wacker, L, Diego Galván, J, Arnold, S, Arseneault, D, Baillie, M, Beer, J, Bernabei, M, Bleicher, N, Boswijk, G, Bräuning, A, Carrer, M, Ljungqvist, FC, Cherubini, P, Christ, M, Christie, DA, Clark, PW, Cook, ER, D’Arrigo, R, Davi, N, Eggertsson, O, Esper, J, Fowler, A.M, Gedalof, Z, Gennaretti, F, Grießinger, J, Grissino-Mayer, H, Grudd, H, Gunnarson, BE, Hantemirov, R, Herzig, F, Hessl, A, Heussner, K-U, Jull, AJT, Kukarskih, V, Kirdyanov, A, Kolář, T, Krusic, PJ, Kync, T, Lara, A, LeQuesne, C, Linderholm, HW, Loader, NJ, Luckman, B, Miyake, F, Myglan, VS, Nicolussi, K, Oppenheimer, C, Palmer, J, Panyushkina, I, Pederson, N, Rybníček, M, Schweingruber, FH, Seim, A, Sigl, M, Churakova (Sidorova), O, Speer, JH, Synal, H-A, Tegel, W, Treydte, K, Villalba, R, Wiles, G, Wilson, R, Winship, LJ, Wunder, J, Yang, B, Young, GHF. 2018. Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE. Nature Communications 9(3605): doi:10.1038/s41467-018-06036-0.CrossRefGoogle Scholar
Burley, DV. 1998. Tongan archaeology and the Tongan past, 2850–150 B.P. Journal of World Prehistory 12(3):337392.CrossRefGoogle Scholar
Burr, GS, Beck, JW, Corrège, T, Cabioch, G, Taylor, FW, Donahue, DJ. 2009. Modern and Pleistocene reservoir ages inferred from South Pacific corals. Radiocarbon 51:319335.CrossRefGoogle Scholar
Burr, G, Haynes, C, Shen, C, Taylor, F, Chang, Y, Beck, J, Nguyen, V, Zhou, W. 2015. Temporal variations of radiocarbon reservoir ages in the south Pacific Ocean during the Holocene. Radiocarbon 57(4):507515.CrossRefGoogle Scholar
Butzin, M, Koehler, P, Lohmann, G. 2017. Marine radiocarbon reservoir age simulations for the past 50,000 years. Geophysical Research Letters 44(16):84738480.CrossRefGoogle Scholar
Chubb, LJ. 1930. Geology of the Marquesas Islands. Bernice P. Bishop Museum Bulletin 68. Honolulu, Hawai’i.Google Scholar
Clark, J, Quintus, S, Weisler, M, St Pierre, E, Nothdurft, L, Feng, Y, Hua, Q. 2016a. Marine reservoir correction for American Samoa using U-series and AMS dated corals. Radiocarbon 58(4): doi:10.1017/RDC.2016.53.CrossRefGoogle Scholar
Clark, J, Quintus, S, Weisler, M, St Pierre, E, Nothdurft, L, Feng, Y. 2016b. Refining the chronology for west Polynesian colonization: New data from the Samoan archipelago. Journal of Archaeological Science: Reports 6:266274.CrossRefGoogle Scholar
Cleghorn, P, Shapiro, W. 2000. Archaeological data recovery report for the proposed Ta‘u road reconstruction, at Faga and Fitiuta, Ta‘u Island, Manu‘a, American Samoa. Prepared for U.S. Army Corp of Engineers. Pacific Legacy, Inc.Google Scholar
Dickinson, WR. 2001. Paleoshoreline record of relative Holocene sea levels on Pacific islands. Earth-Science Reviews 55:191234.CrossRefGoogle Scholar
Fairbanks, RG, Mortlock, RA, Chiu, T-C, Cao, L, Kaplan, A, Guilderson, TP, Fairbanks, TW, Bloom, AL, Grootes, PM, Nadeau, M-J. 2005. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quaternary Science Reviews 24:17811796.CrossRefGoogle Scholar
Hart, AM, Bell, JD, Foyle, TP. 1998. Growth and survival of the giant clams, Tridacna derasa, T. maxima and T. crocea, at village farms in the Solomon Islands. Aquaculture 165:203e220.CrossRefGoogle Scholar
Hogg, AG, Hua, Q, Blackwell, PG, Niu, M, Buck, CE, Guilderson, TP, Heaton, TJ, Palmer, JG, Reimer, PJ, Reimer, RW, Turney, CSM, Zimmerman, SRH. 2013. ShCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55(4):18891903.CrossRefGoogle Scholar
Hua, Q, Webb, GE, Zhao, JX, Nothdurft, L, Lybolt, M, Price, GJ, Opdyke, BN. 2015. Large variations in the Holocene marine radiocarbon reservoir effect reflect ocean circulation and climate changes. Earth and Planetary Science Letters 422:3344.CrossRefGoogle Scholar
Irwin, G, Worthy, TH, Best, S, Hawkins, S, Carpenter, J, Matararaba, S. 2011. Further investigations at the Naigani Lapita site (VL 21/5), Fiji: excavation, radiocarbon dating and palaeofaunal extinction. Journal of Pacific Archaeology 2:6678.Google Scholar
Jones, M, Petchey, F, Green, R, Sheppard, P, Phelan, M, 2007. The marine ΔR for Nenumbo: a case study in calculating reservoir offsets from paired sample data. Radiocarbon 49(1):95102.CrossRefGoogle Scholar
Kirch, PV. 1993. Radiocarbon chronology of the To’aga Site. In: Kirch, PV, Hunt, TL, editors. The To’aga site: Three millennia of Polynesian occupation in the Manu’a Islands, American Samoa. Berkeley: Contributions of the University of California Archaeological Research Facility No. 51. p. 8592.Google Scholar
Kirch, P. 1997. The Lapita Peoples: Ancestors of the Oceanic World. Oxford: Blackwell.Google Scholar
Kirch, P, Green, R. 2001. Hawaiki: Ancestral Polynesia. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Komugabe-Dixson, A, Fallon, S, Eggins, S, Thresher, R. 2016. Radiocarbon evidence for mid-late Holocene changes in southwest Pacific Ocean circulation. Paleoceanography 31:971985. doi:10.1002/2016PA002929.CrossRefGoogle Scholar
Macario, KD, Souza, RCCL, Aguilera, OA, Carvalho, C, Oliveira, FM, Alves, EQ, Chanca, IS, Silva, EP, Douka, K, Decco, J, Trindade, DC, Marques, AN, Anjos, RM, Pamplona, FC. 2015. Marine reservoir effect on the southeastern coast of Brazil: Results from the Tarioba shellmound paired samples. Journal of Environmental Radioactivity 143:1419.CrossRefGoogle ScholarPubMed
Marsh, EJ, Bruno, MC, Fritz, SC, Baker, P, Capriles, JM, Hastorf, CA. 2018. IntCal, SHCal, or a mixed curve? Choosing a 14C calibration curve for archaeological and paleoenvironmental records from tropical South America. Radiocarbon. doi:10.1017/RDC.2018.16.CrossRefGoogle Scholar
McConnaughey, TA, Burdett, J, Whelan, JF, Paull, CK. 1997. Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochimica et Cosmochimica Acta 61:611622.CrossRefGoogle Scholar
Nunn, PD, Carson, MT. 2015. Sea-level fall implicated in profound societal change about 2570 cal yr BP (620 BC) in western Pacific island groups. Geography and Environment 2:1732. doi:10.1002/geo2.3.CrossRefGoogle Scholar
Nunn, PD, Petchey, F. 2013. Bayesian re-evaluation of Lapita settlement in Fiji: radiocarbon analysis of the Lapita settlement at Bourewa and nearby sites on the Rove Peninsula, Viti Levu Island. Journal of Pacific Archaeology 4(2):2134.Google Scholar
Ortlieb, L, Vargas, G, Saliège, J-F. 2011. Marine radiocarbon reservoir effect along the northern Chile–southern Peru coast (14–24°S) throughout the Holocene. Quaternary Research 75:91103. doi:10.1016/j.yqres.2010.07.018.CrossRefGoogle Scholar
Paterne, M, Ayliffe, LK, Arnold, M, Cabioch, G, Tisnerat-Laborde, N, Hatté, C, Douville, E, Bard, E. 2004. Paired 14C and 230Th/U dating of surface corals from the Marquesas and Vanuatu (sub-equatorial Pacific) in the 3000 to 15,000 cal yr interval. Radiocarbon 46:551566.CrossRefGoogle Scholar
Petchey, F. 2009. Dating marine shell in Oceania: Issues and prospects. In: Fairbairn, A, O’Connor, S, Marwick, B, editors. New Directions in Archaeological Science. ANU: E Press. p. 157172.Google Scholar
Petchey, F, Clark, G. 2010. A ΔR for the Palau Islands: An evaluation of extant and new ΔR values and their application to archaeological deposits at Ulong. Journal of Island Archaeology 5:236252. doi:10.1080/15564890903155935.CrossRefGoogle Scholar
Petchey, F, Clark, G. 2011. Tongatapu hardwater: investigation into the 14C marine reservoir offset in lagoon, reef and open ocean environments of a limestone island. Quaternary Geochronology 6:539554.CrossRefGoogle Scholar
Petchey, F, Kirch, PV. 2019. The importance of shell: Re-dating of the To’aga site (Ofu Island, Manu’a) and a revised chronology for the Lapita to Polynesian Plainware Transition in Tonga and Samoa. PLos One. doi:10.1371/journal.pone.0211990.CrossRefGoogle Scholar
Petchey, F, Allen, MS, Addison, DJ, Anderson, A. 2009. Stability in the South Pacific marine 14C reservoir over the last 750 years. Evidence from American Samoa, the southern Cook Islands and the Marquesas. Journal of Archaeological Science 36(10):22342243.Google Scholar
Petchey, F, Anderson, A, Hogg, A, Zondervan, A. 2008a. The marine reservoir effect in the Southern Ocean: an evaluation of extant and new ΔR values and their application to archaeological chronologies. Journal of the Royal Society of New Zealand 38(4):243262.CrossRefGoogle Scholar
Petchey, F, Anderson, A, Zondervan, A, Ulm, S, Hogg, A. 2008b. New marine ΔR values for the South Pacific subtropical gyre region. Radiocarbon 50(3):373397.CrossRefGoogle Scholar
Petchey, F, Clark, G, Lindeman, I, O’Day, P, Southon, J, Dabell, K, Winter, O. 2018. Shellfish isotopic insight into changing sea-level and associated impact on the first settlers of the Mariana Archipelago. Quaternary Geochronology. doi:10.1016/j.quageo.2018.10.002.CrossRefGoogle Scholar
Petchey, F, Phelan, M, White, P. 2004. New ΔR values for the southwest Pacific Ocean. Radiocarbon 46(2):10051014.CrossRefGoogle Scholar
Petchey, F, Ulm, S, David, B, McNiven, IJ, Asmussen, B, Tomkins, H, Richards, T, Rowe, C, Leavesley, M, Mandui, H, Stanisic, J. 2012. Radiocarbon marine reservoir variability in herbivores and deposit-feeding gastropods from an open coastline, Papua New Guinea. Radiocarbon 54(3–4):111.CrossRefGoogle Scholar
Petchey, F, Ulm, S, David, B, McNiven, IJ, Asmussen, B, Tomkins, H, Dolby, N, Aplin, K, Richards, T, Rowe, C, Leavesley, M, Mandui, H. 2013. High-resolution radiocarbon dating of marine materials in archaeological contexts: radiocarbon marine reservoir variability between Anadara, Gafrarium, Batissa, Polymesoda and Echinoidea at Caution Bay, Southern coastal Papua New Guinea. Archaeological and Anthological Science 5(1):6980.Google Scholar
Petchey, F, Spriggs, M, Bedford, S, Valentin, F. 2015. The chronology of occupation at Teouma, Vanuatu: Use of a modified chronometric hygiene protocol and Bayesian modelling to evaluate midden remains. Journal of Archaeological Science: Reports 4:95105. doi:10.1016/j.jasrep.2015.08.024.CrossRefGoogle Scholar
Phelan, MB. 1999. A ΔR correction value for Sāmoa from known-age marine shells. Radiocarbon 41(1):99101.CrossRefGoogle Scholar
Posth, C, Nägele, K, Colleran, H, Valentin, F, Bedford, S, Kami, KW, Shing, R, Buckley, H, Kinaston, R, Walworth, M, Clark, GR, Reepmeyer, C, Flexner, J, Maric, T, Moser, J, Gresky, J, Kiko, L, Robson, KJ, Auckland, K, Oppenheimer, S.J, Hill, AVS, Mentzer, AJ, Zech, J, Petchey, F, Roberts, P, Jeong, C, Gray, RD, Krause, J, Powell, A. 2018. Language continuity despite population replacement in Remote Oceania. Nature Ecology and Evolution. doi:10.1038/s41559-018-0498-2.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, C, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatteé, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887. doi:10.2458/azu_js_rc.55.16947.CrossRefGoogle Scholar
Reimer, RW, Reimer, PJ. 2017. An online application for ΔR calculation. Radiocarbon 59(5):16231627.CrossRefGoogle Scholar
Rougerie, F, Wauty, B. 1993. L’océanographie du Pacifique Central Sud. In: Atlas de Polynésie Française. ORSTOM editions. p. 20–1. In French.Google Scholar
Spennemann, DHR, Head, MJ. 1998. Tongan pottery chronology, 14C dates and the hardwater effect. Quaternary Geochronology 17:10471056.Google Scholar
Sikes, EL, Samson, CR, Guilderson, TP, Howard, WR. 2000. Old radiocarbon ages in the southwest Pacific Ocean during the last glacial period and deglaciation. Nature 405:555559.CrossRefGoogle ScholarPubMed
Stearns, H. 1944. “Geology of the Sāmoan Islands”. Bulletin of the Geological Society of America 55(November):13121313. doi:10.1130/gsab-55-1279.CrossRefGoogle Scholar
Stoddart, DR. 1975 . Scientific studies in the southern Cook Islands: Background and bibliography. In: Stoddart, DR, Gibbs, PE, editors. Almost-atoll of Aitutki: reef studies in the Cook Islands, South Pacific. Atoll of Aitutaki: Reef studies in the Cook Islands, South Pacific. Atoll Research Bulletin 190. Washington (DC): Smithsonian Institution. p. 130.Google Scholar
Stuiver, M, Pearson, GW, Braziunas, T. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28(2B):9801021.CrossRefGoogle Scholar
Toggweiler, JR, Dixon, K, Broecker, WS. 1991. The Peru upwelling and the ventilation of the South Pacific thermocline. Journal of Geophysical Research 96:20,46720,497. doi:10.1029/91JC02063.CrossRefGoogle Scholar
Ulm, S, Petchey, F, Ross, A. 2009. Marine reservoir corrections for Moreton Bay, Australia. Archaeology in Oceania 44:160168.CrossRefGoogle Scholar
Yu, K, Hua, Q, Zhao, J-X, Hodge, E, Fink, D, Barbetti, M. 2010. Holocene marine 14C reservoir age variability: evidence from 230Th-dated corals from South China Sea. Paleoceanography 25: PA3205. doi:10.1029/2009PA001831.CrossRefGoogle Scholar