Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-02T19:26:01.008Z Has data issue: false hasContentIssue false

Modeled and Measured Carbon Isotopic Composition and Petrographically Estimated Binder-Aggregate Ratio—Recipe for Binding Material Dating?

Published online by Cambridge University Press:  20 May 2019

Danuta Michalska*
Affiliation:
Institute of Geology, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, ul. Bogumiła Krygowskiego 12, 61-680Poznań, Poland
Jacek Pawlyta
Affiliation:
Institute of Physics - Centre for Science and Education, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
*
*Corresponding author. Email: danamich@amu.edu.pl.

Abstract

This paper presents the results of radiocarbon (14C) dating of bulk mortars and reports an attempt of implementation of the knowledge about the isotopic fractionation, based on δ13C measurements, to make the age correction for mortars, together with verification of such correction based on the percentage estimation of carbonate components, namely binder and aggregate. To evaluate the variability of isotopic fractionation during CO2 absorption by mortar, dependent on the climatic and environmental conditions, and the type of mortar, the δ13C measurements have been performed for the mortars from Sussita (Golan Heights). Such measurements were also made for fragments of natural carbonate rocks and for mortars produced in the laboratory from the same substrate. We propose the recipe for mortars age estimation.

Type
Research Article
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ambers, J. 1987. Stable carbon isotope ratios and their relevance to the determination of accurate radiocarbon dates for lime mortars. Journal of Archaeological Science 14(6):569576.CrossRefGoogle Scholar
Baxter, MS, Walton, A. 1970. Radiocarbon dating of mortars. Nature 225(5236):937938.CrossRefGoogle ScholarPubMed
Ben-Avraham, Z, Lazar, M, Schattner, U, Marco, S. 2005. The Dead Sea Fault and its effect on civilization. In: Wenzel, F, editor. Perspectives in modern seismology. Lectures Notes in Earth Sciences. Berlin, Heidelberg: Springer-Verlag. Vol. 105, p. 146167.Google Scholar
Ben-Menahem, A. 1991. Four thousand years of seismicity along the Dead Sea Rift. Journal of Geophysical Research Atmospheres 96(B12):2019520216.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Berger, R. 1992. 14C dating mortars in Ireland. Radiocarbon 34(3):880889.CrossRefGoogle Scholar
Cohen-Ofri, I, Weiner, L., Boaretto, E, Mintz, G, Weiner, S. 2006. Modern and fossil charcoal: aspect of structure and diagenesis. Journal of Archaeological Science 33(3):428439.CrossRefGoogle Scholar
Eppelbaum, L, Ben-Avraham, Z, Katz, Y. 2004. Integrated analysis of magnetic, paleomagnetic and K-Ar data in a tectonic complex region: An example from the Sea of Galilee. Geophysical Research Letters 31:L19602.CrossRefGoogle Scholar
Garfunkel, Z. 1981. Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics. Tectonophysics 80:81108.CrossRefGoogle Scholar
Geological Survey of Israel. 2008. The Geological Map of Israel 1:50000, Teverya, sheet 4-II. Sneh A, editor. Jerusalem.Google Scholar
Guidoboni, E, Comastri, A. 2005. Catalogue of earthquakes and tsunamis in the Mediterranean area from the 11th to the 15th century. Rome-Bologna, Italy: INGV-SGA. p. 1037.Google Scholar
Guidoboni, E, Comastri, A, Traina, G. 1994. Catalogue of ancient earthquakes in the Mediterranean area up to the 10th Century. Rome-Bologna, Italy: INGV-SGA. p. 504.Google Scholar
Goslar, T, Nawrocka, D, Czernik, J. 2009. Foraminiferous limestones in 14C dating of mortar. Radiocarbon 51(2):857866.CrossRefGoogle Scholar
Hajdas, I, Trumm, J, Bonani, G, Biechele, C, Maurer, M, and Wacker, L. 2012. Roman ruins as an experiment for radiocarbon dating of mortar. Radiocarbon 54:897903.CrossRefGoogle Scholar
Hajdas, I, Lindroos, A, Heinemeier, J, Ringbom, Å, Marzaioli, F, Terrasi, F, Passariello, I, Capano, M, Artioli, G, Addis, A, Secco, M, Michalska, D, Czernik, J, Goslar, T, Hayen, R, Van Strydonck, M, Fontaine, L, Boudin, M, Maspero, F, Panzeri, L, Galli, A, Urbanova, P, Guibert, P. 2017. Preparation and dating of mortar samples—MOrtar Dating Inter-comparison Study (MODIS). Radiocarbon 59(6):18451858.CrossRefGoogle Scholar
Heinemeier, J, Jungner, H, Lindroos, A, Ringbom, A, Von Konov, T, Rud, N. 1997. AMS 14C dating of lime mortar. Nuclear Instruments and Methods in Physics Research B 123:487495.CrossRefGoogle Scholar
Heinemeier, J, Ringbom, Å, Lindroos, A, Sveinbjörnsdóttir, ÁE. 2010. Successful AMS 14C dating of non-hydraulic lime mortars from the medieval churches of the Åland Islands, Finland. Radiocarbon 52(1):171204.CrossRefGoogle Scholar
Katz, O, Amit, R, Yagoda-Biran, G, Hatzor, JH, Porat, N, Medvedev, B. 2011. Quaternary earthquakes and landslides in the Sea of Galilee area, the Dead Sea Transform: Paleoseismic analysis and implication to the current hazard. Israel Journal of Earth Sciences 58:275–94.CrossRefGoogle Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Braskén, M, Sveinbjörnsdóttir, Á. 2007. Mortar dating using AMS 14C and sequential dissolution: examples from medieval, non-hydraulic lime mortars from the Åland Islands, SW Finland. Radiocarbon 49(1):4767.CrossRefGoogle Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Brock, F, Sonck-Koota, P, Pehkonen, M, Suksi, J. 2011. Problems in radiocarbon dating of Roman Pozzolana mortars. Commentationes Humanarum Litterarum 128:214230.Google Scholar
Lindroos, A, Orsel, E, Heinemeier, J, Lill, J-O, Gunnelius, K. 2014. 14C dating of Dutch mortars made from burned shell. Radiocarbon 56(3):959968.CrossRefGoogle Scholar
Marco, S, Hartal, M, Hazan, N, Lev, L, Stein, M. 2003. Archaeology, history and geology of the A.D. 749 earthquake, Dead Sea transform. Geological Society of America. Geology 31(8):665668.Google Scholar
Marzaioli, F, Lubritto, C, Nonni, S, Passariello, I, Capano, M, Terrasi, F. 2011. Mortar radiocarbon dating: Preliminary accuracy evaluation of a novel methodology. Analytical Chemistry 83(6):20382045.CrossRefGoogle ScholarPubMed
Marzaioli, F, Nonni, S, Passariello, I, Capano, M, Ricci, P, Lubritto, C, De Cesare, N, Eramo, G, Castillo, JAQ, Terrasi, F. 2013. Accelerator mass spectrometry 14C dating of lime mortars: methodological aspects and field study applications at CIRCE (Italy). Nuclear Instruments and Methods in Physics Research B 294: 246251.CrossRefGoogle Scholar
Meiler, M. 2011. The deep geological structure of the Golan Heights and the evolution of the adjacent Dead Sea fault systém [PhD thesis]. Tel-Aviv University.Google Scholar
Michalska, D, Czernik, J. 2015. Carbonates in leaching reactions in context of 14C dating. Nuclear Instruments and Methods in Physics Research B 361:431439.CrossRefGoogle Scholar
Michalska, D, Czernik, J, Goslar, T. 2017. Methodological aspect of mortars dating (Poznań, Poland, MODIS). Radiocarbon 59(6):18911906.CrossRefGoogle Scholar
Michalska, D. 2019. Influence of different pretreatment on mortars dating results. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms doi: https://doi.org/10.1016/j.nimb.2019.03.038.CrossRefGoogle Scholar
Michalska, D, Pazdur, A, Czernik, J, Szczepaniak, M, Żurakowska, M. 2013. Cretaceous aggregate and reservoir effect in dating of binding materials. Geochronometria 40(1):3341.CrossRefGoogle Scholar
Michalska Nawrocka, D, Michczyńska, DJ, Pazdur, A, Czernik, J. 2007. Radiocarbon chronology of the ancient settlement on the Golan Heights. Radiocarbon 49 (2):625637.CrossRefGoogle Scholar
Michelson, H, Flexer, A, Erez, Z. 1987. A comparison of the eastern and western sides of the Sea of Galilee and its implication on the tectonics of the northern Jordan Rift-Valley. Tectonophysics 141(1–3):125134.CrossRefGoogle Scholar
Młynarczyk, J. 2000. Na tropach tajemnic antycznego Hippos. Archeologia żywa 3–4(15):1114 (In Polish).Google Scholar
Mor, D, Michelson, H, Druckman, Y, Mimran, Y, Heimann, A, Goldberg, M, Sneh, A. 1997. Notes on the geology of the Golan heights. Report GSI/15/97. Jerusalem.Google Scholar
Nawrocka, D, Michniewicz, J, Pawlyta, J, Pazdur, A. 2005. Application of radiocarbon metod for dating of lime mortars. Journal on Methods and Applications of Absolute Chronology, Geochronometria 24:109115.Google Scholar
Nawrocka, D, Czernik, J, Goslar, T. 2009. 14C dating of carbonate mortars from Polish and Israeli sites. Radiocarbon 51(2):857866.CrossRefGoogle Scholar
Nonni, S, Marzaioli, F, Secco, M, Passariello, I, Capano, M, Lubritto, C, Mignardi, S, Tonghini, C, Terrasi, F. 2013. 14C mortar dating: the case of the Medieval Shayzar Citadel, Syria. Radiocarbon 55(2):514525.CrossRefGoogle Scholar
Pachiaudi, C, Marechal, J, Van Strydonck, M, Dupas, M, Dauchot-Dehon, M. 1986. Isotopic fractionation of carbon during CO2 absorption by mortar. Radiocarbon 28(2A):691697.CrossRefGoogle Scholar
Pazdur, A, Michczyński, A, Pawlyta, J, Spahiu, P. 2000. Comparision of the radiocarbon dating methods used in the Gliwice Radiocarbon Laboratory. Geochronometria 18:914.Google Scholar
Rebollo, NR, Cohen-Ofri, I, Popovitz-Biro, R, Bar-Yosef, O, Meignen, L, Goldberg, P, Weiner, S, Boaretto, E. 2008. Structural characterization of charcoal exposed to high and low pH: implications for 14C sample preparation and charcoal preservation. Radiocarbon 50(2):289307.CrossRefGoogle Scholar
Reches, Z, Hoexter, DF. 1981. Holocene seismic and tec tonic activity in the Dead Sea area. Tectonophysics 80:235254.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Ramsey, CB, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, J, Hattž, C, Heaton, TJ, Hoffmann, DI, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, Van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Ringbom, Å, Heinemeier, J, Lindroos, A, Brock, F. 2011. Mortar dating and Roman pozzolana. Current research on Roman mortar and concrete. Proceeding of the conference March 27–29, 2008 Helsinki. In: Ringbom, Å, Hohlfelder, RL, editors. Societas Scientiarum Fennica. Commentationes Humanarum Litterarum. Vol. 128, p. 187206.Google Scholar
Ringbom, Å, Lindroos, A, Heinemeier, J, Sonck-Koota, P. 2014. 19 years of mortar dating: learning from experience. Proceedings of the Radiocarbon and Archaeology 7th International Symposium Ghent, Belgium, April 2013. Radiocarbon 56(2):619635.CrossRefGoogle Scholar
Segal, A, Młynarczyk, J, Burdajewicz, M, Schuler, M, Eisenberg, M. 2004. Hippos (Sussita). Fifth season of excavations and summary of all five seasons (2000–2004). Haifa: University of Haifa, Zinman Institute of Archaeology (In Hebrew and English).Google Scholar
Shaliv, G. 1991. Stages in the tectonic and volcanic history of the Neogene Basin in the Lower Galilee and the Valleys. Jerusalem: Geological Survey of Israel. GSI/11/91, p. 94 (In Hebrew with English abstract).Google Scholar
Shtober-Zisu, N. 2013. The geographical, geological and geomorphological settings of the Sussita region. In: Segal, A, Eisenbe, M, Młynarczyk, J, Burdajewicz, M, Schuler, M, editors. Hippos—Sussita of the Decapolis. The first twelve seasons of excavations. The Zinman Institute of Archaeology, University of Haifa, Israel. p. 3440.Google Scholar
Stuiver, M, Polach, H. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.CrossRefGoogle Scholar
Van Strydonck, M, Dupas, M, Dauchot-Dehon, M, Pachiaudi, Ch, Marechal, J. 1986. The influence of contaminating fossil carbonate and the variations of δ13C in mortar dating. Radiocarbon 28(2A):702710.CrossRefGoogle Scholar
Van Strydonck, M, Dupas, M, Keppens, E. 1989. Isotopic fractionation of oxygen and carbon in lime mortar under natural environmental conditions. Radiocarbon 31(3):610618.CrossRefGoogle Scholar
Wechsler, N, Katz, O, Dray, Y, Gonen, I, Marco, S. 2009. Estimating location and size of historical earthquake by combining archaeology and geology in Um-El-Qanatir, Dead Sea Transform. Natural Hazards 50:2743.CrossRefGoogle Scholar
Supplementary material: File

Michalska and Pawlyta supplementary material

Michalska and Pawlyta supplementary material

Download Michalska and Pawlyta supplementary material(File)
File 41 KB