Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-4xs5l Total loading time: 0.244 Render date: 2021-06-13T07:19:05.529Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Article contents

Elastic Tie-Pointing—Transferring Chronologies between Records via a Gaussian Process

Published online by Cambridge University Press:  09 February 2016

Timothy J Heaton
Affiliation:
School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, United Kingdom
Edouard Bard
Affiliation:
CEREGE, Aix-Marseille University, CNRS, IRD, Collège de France, Technopole de l'Arbois BP 80, 13545 Aix en Provence Cedex 4, France
Konrad A Hughen
Affiliation:
Department of Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
Corresponding
E-mail address:
Rights & Permissions[Opens in a new window]

Abstract

We consider a general methodology for the transferral of chronologies from a master reference record containing direct dating information to an undated record of interest that does not. Transferral is achieved through the identification, by an expert, of a series of tie-points within both records that are believed to correspond to approximately contemporaneous events. Through tying of the 2 records together at these points, the reference chronology is elastically deformed onto the undated record. The method consists of 3 steps: creation of an age-depth model for the reference record using its direct dating information; selection of the tie-points and translation of their age estimates from the reference to the undated record; and finally, creation of an age-depth model for the undated record using these uncertain tie-point age estimates. Our method takes full account of the uncertainties involved in all stages of the process to create a final chronology within the undated record that allows joint age estimates to be found together with their credible intervals. To achieve computational practicality, we employ a Gaussian process to create our age-depth models. Calculations can then be performed exactly without resort to extremely slow Monte Carlo methods involving multiple independent model fits that would be required by other age-depth models.

Type
Research Article
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Altabet, MA, Higginson, MJ, Murray, DW. 2002. The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2 . Nature 415(6868):159–62.CrossRefGoogle ScholarPubMed
Bard, E, Ménot, G, Rostek, F, Licari, L, Böning, P, Edwards, RL, Cheng, H, Wang, YJ, Heaton, TJ. 2013. Radiocarbon calibration/comparison records based on marine sediments from the Pakistan and Iberian margins. Radiocarbon 55(4), this issue.CrossRefGoogle Scholar
Blaauw, M. 2012. Out of tune: the dangers of aligning proxy archives. Quaternary Science Reviews 36:3849.CrossRefGoogle Scholar
Blaauw, M, Christen, JA. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6(3):457–74.Google Scholar
Böning, P, Bard, E. 2009. Millennial/centennial-scale thermocline ventilation changes in the Indian Ocean as reflected by aragonite preservation and geochemical variations in Arabian Sea sediments. Geochimica et Cosmochimica Acta 73(22):6771–88.CrossRefGoogle Scholar
Bronk Ramsey, C. 2008. Deposition models for chronological records. Quaternary Science Reviews 27(1–2):4260.CrossRefGoogle Scholar
Edwards, RL, Cheng, H, Wang, YJ, Yuan, DX, Kelly, MJ, Kong, XG, Wang, XF, Burnett, A, Smith, E. 2013. A refined Hulu and Dongge Cave climate record and the timing of the climate change during the last glacial cycle. Earth and Planetary Science Letters, submitted.Google Scholar
Haam, E, Huybers, P. 2010. A test for the presence of covariance between time-uncertain series of data with application to the Dongge Cave speleothem and atmospheric radiocarbon records. Paleoceanography 25(2): PA2209, doi:10.1029/2008PA001713.CrossRefGoogle Scholar
Haslett, J, Parnell, AC. 2008. A simple monotone process with application to radiocarbon-dated depth chronologies. Journal of the Royal Statistical Society, Series C (Applied Statistics) 57(4):399418.CrossRefGoogle Scholar
Hogg, AG, Hua, Q, Blackwell, PG, Niu, M, Buck, CE, Guilderson, TP, Heaton, TJ, Palmer, JG, Reimer, PJ, Reimer, RW, Turney, CSM, Zimmerman, SRH. 2013. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55(4), this issue.CrossRefGoogle Scholar
Hughen, K, Lehman, S, Southon, J, Overpeck, J, Marchal, O, Herring, C, Turnbull, J. 2004. 14C activity and global carbon cycle changes over the past 50,000 years. Science 303(5655):202–7.CrossRefGoogle ScholarPubMed
Hughen, K, Southon, J, Lehman, S, Bertrand, C, Turnbull, J. 2006. Marine-derived 14C calibration and activity record for the past 50,000 years updated from the Cariaco Basin. Quaternary Science Reviews 25(23–24):3216–27.CrossRefGoogle Scholar
Lisiecki, LE, Lisiecki, PA. 2002. Application of dynamic programming to the correlation of paleoclimate records. Paleoceanography 17(4):1049–60.CrossRefGoogle Scholar
Martinson, DG, Menke, W, Stoffa, P. 1982. An inverse approach to signal correlation. Journal of Geophysical Research 87(B6):4807–18.CrossRefGoogle Scholar
Parnell, AC, Buck, CE, Doan, TK. 2011. A review of statistical chronology models for high-resolution, proxy-based Holocene palaeoenvironmental reconstruction. Quaternary Science Reviews 30(21–22):2948–60.CrossRefGoogle Scholar
Pichevin, L, Bard, E, Martinez, P, Billy, I. 2007. Evidence of ventilation changes in the Arabian Sea during the Late Quaternary: implication for denitrification and nitrous oxide emission. Global Biogeochemical Cycles 21(4): GB4008, doi:10.1029/2006GB002852.CrossRefGoogle Scholar
R Core Team. 2013. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. URL: http://www.R-project.org.Google Scholar
Rasmussen, CE, Williams, CKI. 2006. Gaussian Processes for Machine Learning. Cambridge: MIT Press.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffman, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine 13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4), this issue.CrossRefGoogle Scholar
Schulte, S, Rostek, F, Bard, E, Rullkötter, J, Marchal, O. 1999. Variations of oxygen-minimum and primary productivity recorded in sediments of the Arabian Sea. Earth and Planetary Science Letters 173(3):205–21.CrossRefGoogle Scholar
Schulz, H, von Rad, U, Erlenkeuser, H. 1998. Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393(6680):54–7.CrossRefGoogle Scholar
Wang, YJ, Cheng, H, Edwards, RL, An, ZS, Wu, JY, Shen, C-C, Dorale, JA. 2001. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294(5550):2345–8.CrossRefGoogle ScholarPubMed
You have Access
24
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Elastic Tie-Pointing—Transferring Chronologies between Records via a Gaussian Process
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Elastic Tie-Pointing—Transferring Chronologies between Records via a Gaussian Process
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Elastic Tie-Pointing—Transferring Chronologies between Records via a Gaussian Process
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *