Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T10:24:29.829Z Has data issue: false hasContentIssue false

Delayed Hardening and Reactivation of Binder Calcite, Common Problems in Radiocarbon Dating of Lime Mortars

Published online by Cambridge University Press:  14 February 2020

Alf Lindroos*
Affiliation:
Faculty of Science and Engineering, Åbo Akademi University, Finland
Åsa Ringbom
Affiliation:
Art History, Åbo Akademi University, Finland
Jan Heinemeier
Affiliation:
AMS Centre, Department of Physics and Astronomy, Aarhus University, Denmark
Irka Hajdas
Affiliation:
Laboratory of Ion Beam Physics, ETHZ, Otto-Stern-Weg 5, Zürich, Switzerland
Jesper Olsen
Affiliation:
AMS Centre, Department of Physics and Astronomy, Aarhus University, Denmark
*
*Corresponding author. Email: alindroo@abo.fi

Abstract

When sampling mortars for radiocarbon (14C) dating it is crucial to ensure that the sample has hardened rapidly relative the resolution of the dating method. Soft and porous lime mortars usually fulfill this criterion if the samples are taken from an uncovered surface from less than a few centimeters deep. However, hard, concrete-like mortars may be impermeable for carbon dioxide and even the outermost centimeters may still contain uncarbonated calcium hydroxide. These mortars may harden very slowly and contain carbonate that formed centuries or even millennia after the original building phase, and they can still be alkaline and capture modern 14C, causing younger 14C ages than the actual construction age. Another problem is reactivation of the binder carbonate if it has been partly decarbonated during a fire later on in its history. It will be shown that these young carbonates dissolve rapidly in phosphoric acid and in many cases a reasonable 14C age can be read from 14C profiles in sequential dissolution if the measurements from initially formed carbon dioxide are disregarded. However, if a mortar was made waterproof deliberately by adding crushed or ground tile, as in Roman cocciopesto mortars, it may be very difficult to get a conclusive dating.

Type
Research Article
Copyright
© 2020 by the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the Mortar Dating International Meeting, Pessac, France, 25–27 Oct. 2018

References

REFERENCES

Bakolas, A, Biscontin, G, Moropoulou, A, Zendri, E. 1998. Characterization of structural byzantine mortars by thermogravimetric analysis. Thermochim. Acta 321:151160.CrossRefGoogle Scholar
Baxter, MS, Walton, A. 1970. Radiocarbon dating of mortars. Nature 225(5236):937938.CrossRefGoogle ScholarPubMed
Burr, GS, Edwards, RL, Donahue, DJ, Druffel, ERM, Taylor, FW. 1992. Mass spectrometric 14C and U-Th measurements in coral. Radiocarbon 34:611618.CrossRefGoogle Scholar
Bronk Ramsey, C. 2017. OxCal program. Version 4.3. Oxford Radiocarbon Accelerator Unit: University of Oxford. https//c14.arch.ox.ac.uk/oxcal/OxCal.html.Google Scholar
Craig, H. 1953. The geochemistry of the stable carbon isotopes. Geochimica & Cosmochimica Acta 3: 5392.CrossRefGoogle Scholar
Folk, RL, Valastro, S Jr. 1976. Successful technique for dating of lime mortars by carbon-14. Journal of Field Archaeology 3:203208.10.2307/529387CrossRefGoogle Scholar
Hale, J, Heinemeier, J, Lancaster, L, Lindroos, A, Ringbom, Å. 2003. Dating ancient mortar. American Scientist 91(2):130137.CrossRefGoogle Scholar
Hajdas, I, Lindroos, A, Heinemeier, J, Ringbom, Å, Marzaioli, F, Terrasi, F, Passariello, I, Capano, M, Artioli, G, Addis, A, Secco, M, Michalska, D, Czernik, J, Goslar, T, Hayen, R, Van Strydonck, M, Fontaine, L, Boudin, M, Maspero, F, Panzeri, L, Galli, A, Urbanova, P, Guibert, P. 2017. Preparation and dating of mortar samples—Mortar Dating Inter-comparison Study (MoDIS). Radiocarbon 59(6):18451858. doi: 10.1017/RDC.2017.112.CrossRefGoogle Scholar
Hayen, R, Van Strydonck, M, Boaretto, E, Lindroos, A, Heinemeier, J, Ringbom, Å, Hueglin, S, Michalska, D, Hajdas, I, Marzaioli, F, Maspero, F, Galli, A, Artioli, G, Moreau, C, Guibert, P, Caroselli, M. 2016. Analysis and characterization of historic mortars for absolute dating. Proceedings of the 4th Historic Mortars Conference, HMC2016. Santorini, Greece, 10–12 October 2016. p. 656–664.Google Scholar
Heinemeier, J, Jungner, H, Lindroos, A, Ringbom, Å, von Konow, T, Rud, N. 1997. AMS 14C dating of lime mortar. Nuclear Instruments and Methods in Physics Research B 123:487495.CrossRefGoogle Scholar
Heinemeier, J, Ringbom, Å, Lindroos, A, Sveinbjörnsdóttir, ÁE. 2010. Successful AMS 14C dating of non-hydraulic lime mortars from the medieval churches of the Åland Islands, Finland. Radiocarbon 52(1): 171204.10.1017/S0033822200045124CrossRefGoogle Scholar
Hodgins, GWL, Lindroos, A, Ringbom, Å, Heinemeier, J, Brock, F. 2011. 14C dating of Roman mortars – preliminary tests using diluted hydrochloric acid injected in batches. In: Åsa Ringbom, Robert Hohlfelder, editors. Proceedings from Building Roma Aeterna conference. Rome, 23–25 March 2008. Commentationes Humanarum Litterarum 128. Societas Scientiarium Fennica. p. 209–213.Google Scholar
Labeyrie, J, Delibrias, G. 1964. Dating of old mortars by the carbon-14 method. Nature 201:742.CrossRefGoogle Scholar
Langley, MM, Maloney, SJ, Ringbom, Å, Heinemeier, J, Lindroos, A. 2011. A comparison of dating techniques at Torre de Palma, Portugal: mortars and ceramics. In: Åsa Ringbom, Robert Hohlfelder, editors. Proceedings from Building Roma Aeterna conference. Rome, 23–25 March 2008. Commentationes Humanarum Litterarum 128. Societas Scientiarium Fennica. p. 242–256.Google Scholar
Lichtenberger, A, Lindroos, A, Raja, R, Heinemeier, J. 2015. Radiocarbon analysis of mortar from Roman and Byzantine water management installations in the Northwest Quarter of Jerash, Jordan. Journal of Archaeological Science: Reports 2. p. 114127.Google Scholar
Lindroos, A. 2005. Carbonate phase in historical lime mortars and pozzolana concrete: implication for 14C dating [PhD thesis]. Department of Geology and Mineralogy, Åbo Akademi University: PaintaloGillot. 92 p.Google Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Braskén, M, Sveinbjörnsdóttir, ÁE. 2007. Mortar dating using AMS 14C and sequential dissolution: examples from medieval, non-hydraulic lime mortars from the Åland Islands, SW Finland. Radiocarbon 49(1):4767.CrossRefGoogle Scholar
Lindroos, A, Heinemeier, J, Ringbom, A, Brock, F, Sonck-Koote, P, Pehkonen, M, Suksi, J. 2011. Problems in radiocarbon dating of Roman pozzolana mortars. In: Åsa Ringbom, Robert Hohlfelder, editors. Proceedings from Building Roma Aeterna conference. Rome, 23–25 March 2008. Commentationes Humanarum Litterarum 128. Societas Scientiarium Fennica. p. 214–230.Google Scholar
Lindroos, A, Schrøeder-Daugbjerg, T, Olsen, J, Ringbom, Å, Heinimeier, J. 2020. Sample preparation tests for radiocarbon dating of mortars. Geochronometria, Conference Abstracts Series vol. 2, 13th International Conference “Methods of Absolute Chronology”. Tarnowskie Góry, Poland, 5–7 June 2019.Google Scholar
Marshall, DJ. 1988. Cathodoluminescence of geological materials. Boston: Unwin Hyman. 146 p.Google Scholar
Marzaioli, F, Lubritto, C, Nonni, S, Passariello, I, Capano, M, Terrasi, F. 2011. Mortar radiocarbon dating: preliminary accuracy evaluation of a novel methodology. Analytical Chemistry 83(6):20382045.CrossRefGoogle ScholarPubMed
Nawrocka, D, Michniewicz, J, Pawlyta, J, Pazdur, A. 2005. Application of radiocarbon method for dating of lime mortars. Geochronometria 24:109115.Google Scholar
Mota-López, M-I, Fort, R, Álvarez de Buergo, M, Pizzo, A, Maderuelo-Sanz, R, Meneses-Rodríguez, JM, Ergenç, D. 2018. Characterization of concrete from Roman buildings for public spectacles in Emerita Augusta (Mérida, Spain). Archaeol Anthropol Sci 10:10071022.CrossRefGoogle Scholar
Nonni, S, Marzaioli, F, Mignardi, S, Passariello, I, Capano, M, Terrasi, F. 2018. Radiocarbon dating of mortars with a Pozzolana aggregate using the Cryo2SoniC protocol to isolate the binder. Radiocarbon 60(2):617637. doi: 10.1017/RDC.2017.116.CrossRefGoogle Scholar
Ortega, LA, Cruz Zuluaga, M, Alonso-Olazabal, A, Murelaga, X, Inasausti, M, Ibanez-Exteberria, A. 2012. Historic lime-mortar 14C dating of Santa María La Real (Zarautz, northern Spain): Extraction of suitable grain size for reliable 14C dating. Radiocarbon 54(1):2336.CrossRefGoogle Scholar
Packer, JE. 1995. ‘Forum Traiani’ lexicon topographicum urbis Romae, a cura de Em Steinby. Vol. 2, D-G. Rome. p. 348–356.Google Scholar
Reimer, P J, Bard, E, Bayliss, A, Beck, WJ, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Thomas, P, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, A G, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Christian, SM, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4): 18691887.CrossRefGoogle Scholar
Ringbom, Å, Remmer, C. 2000. Ålands Kyrkor. Vol. 2. Saltvik. Ålands landskapsstyrelse/Museibyrån. Mariehamn. 280 p. In Swedish with English summary.Google Scholar
Ringbom, Å, Hale, J, Heinemeier, J, Lindroos, A, Brock, F. 2006. Mortar dating in archaeological studies of classical and medieval structures. Proceedings, 2nd International Congress on Construction History. Cambridge, 29 March–2 April 2006. p. 2613–2634.Google Scholar
Ringbom, Å, Heinemeier, J, Lindroos, A, Brock, F. 2011. Mortar dating and Roman Pozzolana, results and interpretation. In: Åsa Ringbom, Robert Hohlfelder, editors. Proceedings from Building Roma Aeterna conference. Rome, 23–25 March 2008. Commentationes Humanarum Litterarum 128. Societas Scientiarium Fennica. p. 187–208.Google Scholar
Ringbom, Å, Lindroos, A, Heinemeier, J, Sonck-Koota, P. 2014. 19 years of mortar dating – learning from experience. Radiocarbon 56(2):619635.10.2458/56.17469CrossRefGoogle Scholar
Rojo, A, Cabo, LL, Grossi, CM, Alonso, FJ 2016. Dating the Pre-Romanesque church of San Miguel de Lillo, Spain: New methods for historic buildings. 13th International Congress on the Deteoration and Conservation of Stone: Other materials. p. 583–590.Google Scholar
Sonninen, E, Erämetsä, P, Jungner, H. 1989. Dating of mortar and bricks. An example from Finland. In: Maniatis, Y, editor. Archaeometry: Proceedings of the 25th International Symposium. Amsterdam-Oxford-New York-Toronto. p. 99107.Google Scholar
Stuiver, M, Smith, CS. 1965. Radiocarbon dating of ancient mortar and plaster. In: Chatters, RM, Olson, Ea. Proceedings of the 6th International Conference on Radiocarbon and Tritium Dating. Washington (DC): Clearinghouse for Federal, Scientific & Technical Information, National Bureau of Standards, U.S. Dept. of Commerce. p. 338343.Google Scholar
Synal, HA, Stocker, M, Suter, M. 2007. MICADAS: A new compact radiocarbon AMS system. Nuclear Instruments & Methods in Physics Research B 259:713.CrossRefGoogle Scholar
Tynni, R. 1982. On Paleozoic microfossils in clastic dykes on the Åland Islands and in the core samples from Lumparn. In Paleozoic sediments in the rapakivi area of the Åland Islands. Geol. Surv. Finland Bull. 317:3594.Google Scholar
Van Strydonck, M, Dupas, M, Dauchot-Dehon, M. 1983. Radiocarbon dating of old mortars. PACT Journal 8:337343.Google Scholar
Van Strydonck, M, Dupas, M, Dauchot-Dehon, M, Pachiaudi, Ch, Marechal, J. 1986. The influence of contaminating carbonate and the variations of δ13C in mortar dating. Radiocarbon 28(2A):702710.CrossRefGoogle Scholar
Van Strydonck, M, Dupas, M. 1991. The classification and dating of lime mortars by chemical analysis and radiocarbon dating: A review. In: Waldren WH, Ensenyat JA, Kennard RC, editors. 2nd Deya International Conference of Prehistory. Vol. II. BAR International Series 574:5–43.Google Scholar