Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T14:51:52.776Z Has data issue: false hasContentIssue false

Construction of the Calendar Timescale for Lake Wigry (Ne Poland) Sediments on the Basis of Radiocarbon Dating

Published online by Cambridge University Press:  18 July 2016

N Piotrowska*
Affiliation:
Silesian University of Technology, Institute of Physics, Department of Radioisotopes, Krzywoustego 2, PL-44-100 Gliwice, Poland
I Hajdas
Affiliation:
Ion Beam Physics, Paul Scherrer Institute; ETH Zurich, 8093 Zurich, Switzerland
G Bonani
Affiliation:
Institute for Particle Physics, ETH, 8093 Zurich, Switzerland
*
Corresponding author. Email: natalia.piotrowska@polsl.pl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A radiocarbon chronology of lake sediments deposited in Lake Wigry during the Last Glacial and Holocene periods provided the basis for calendar age-depth modeling. Various fractions (organics and carbonates) were dated and the results were subjected to critical analysis. The dates affected by reservoir effects as well as outlying data were excluded, and the non-linear age model was developed based on 13 ages. The statistical tools used for construction of the models include the Bayesian analysis, applied for calibration of 14C dates with regard to stratigraphical position of the samples, and generalized additive models (GAM).

Type
Articles
Copyright
Copyright © 2007 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Bajkiewicz-Grabowska, E. 1992. Warunki odpytwu i wymiana wód w jeziorach [Discharge and exchange conditions of water in lakes]. In: Zdanowski, B, editor. Jeziora Wigierskiego Parku Narodowego. Stan eutrofizacji i kierunki ochrony. PAN. Kom. Naukowy “Człowiek i środowisko” Zesz. Nauk. 3:2534. In Polish.Google Scholar
Bellido, JM, Pierce, GJ, Wang, J. 2001. Modelling intraannual variation in abundance of squid Loligo forbesi in Scottish waters using generalised additive models. Fisheries Research 52(1–2):2339.Google Scholar
Birks, HJB, Heegaard, E. 2003. Developments in age-depth modelling of Holocene stratigraphical sequences. PAGES Past Global Changes News 11:78.Google Scholar
Bonani, G, Beer, J, Hofmann, H, Synal, H-A, Suter, M, Wölfli, W, Pfleiderer, C, Kromer, B, Junghans, C, Münnich, KO. 1987. Fractionation, precision and accuracy in 14C and 13C measurements. Nuclear Instruments and Methods in Physics Research B 29(1–2):8790.Google Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–30.Google Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon program. Radiocarbon 43(2A):355–63.Google Scholar
Brosse, S, Lek, S. 2000. Modelling roach (Rutilus rutilus) microhabitat using linear and nonlinear techniques. Freshwater Biology 44(3):441–52.Google Scholar
Buck, CE, Kenworthy, JB, Litton, CD, Smith, AFM. 1991. Combining archaeological and radiocarbon information: a Bayesian approach to calibration. Antiquity 65(249):808–21.Google Scholar
Goslar, T, Czernik, J. 2000. Sample preparation in the Gliwice Radiocarbon Laboratory for AMS 14C dating of sediments. Geochronometria 18:18.Google Scholar
Goslar, T, Czernik, J, Goslar, E. 2004. Low-energy 14C AMS in Poznań Radiocarbon Laboratory, Poland. Nuclear Instruments and Methods in Physics Research B 223–224:511.Google Scholar
Hajdas, I. 1993. Extension of the radiocarbon calibration curve by AMS dating of laminated sediments of Lake Soppensee and Lake Holzmaar [PhD dissertation]. Zurich: Eidgenössische Technische Hochschule. 149 p.Google Scholar
Hajdas, I, Bonani, G, Thut, J, Leone, G, Pfenninger, R, Maden, C. 2004. A report on sample preparation at the ETH/PSI AMS facility in Zurich. Nuclear Instruments and Methods in Physics Research B 223–224:267–71.CrossRefGoogle Scholar
Hastie, TJ, Tibshirani, RJ. 1990. Generalized Additive Models. Boca Raton, USA: Chapman and Hall/CRC. 352 p.Google Scholar
Hastie, TJ, Tibshirani, RJ. 1995. Generalized additive models. In: Kotz, S, editor. Encyclopedia of Statistical Sciences. New York: John Wiley & Sons.Google Scholar
Heegaard, E. 2003. The estimation of the relationship between calibrated age and depth in palaeorecords [WWW document]. http://www.uib.no/bot/qeprg/Age-depth.htm. Accessed 26 January 2005.Google Scholar
Heegaard, E, Birks, HJB, Telford, RJ. 2005. Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. The Holocene 15(4):612–8.Google Scholar
Kupryjanowicz, M. 2007. Postglacial development of vegetation in the vicinity of the Wigry Lake. Geochronometria 29:5366.Google Scholar
Marks, L. 2002. Last Glacial Maximum in Poland. Quaternary Science Reviews 21(1–3): 103–10.Google Scholar
Pawlyta, J, Pazdur, A, Piotrowska, N, Poręba, G, Sikorski, J, Szczepanek, M, Król, K, Rutkowski, J, Hałas, S. 2004. Isotopic investigations of uppermost sediments from Lake Wigry (NE Poland) and its environment. Geochronometria 23:71–8.Google Scholar
Pazdur, A, Fogtman, M, Michczyński, A, Pawlyta, J. 2003. Precision of 14C dating in Gliwice Radiocarbon Laboratory. FIRI programme. Geochronometria 22:2740.Google Scholar
Piotrowska, N, Bluszcz, A, Demske, D, Granoszewski, W, Heumann, G. 2004. Extraction and AMS radiocarbon dating of pollen from Lake Baikal sediments. Radiocarbon 46(1):181–7.Google Scholar
R Development Core Team. 2004. The R project for statistical computing [WWW documentation and software]. http://www.R-project.org.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Rutkowski, J, Król, K, Krzysztofiak, L, Prosowicz, D. 2002a. Recent sediments of Lake Wigry (Bryzgiel Basin). Limnological Review 2:353–62.Google Scholar
Rutkowski, J, Rudowski, S, Pietsch, K, Król, K, Krzysztofiak, L. 2002b. Sediments of Wigry Lake (NE Poland) in the light of high-resolution seismic (seismoacoustic) survey. Limnological Review 2:363–71.Google Scholar
Rutkowski, J, Król, K, Krysztofiak, L, Prosowicz, D. 2003. Recent sediments of Wigry Lake (Szyja Basin), NE Poland. Limnological Review 3:197203.Google Scholar
Rutkowski, J, Król, K, Szczepańska, J. 2007. Lithology of the profundal sediments in Słupiańska Bay (Wigry Lake, NE Poland) – introduction to interdisciplinary study. Geochronometria 29:4752.Google Scholar
Sensuła, B, Böttger, T, Pazdur, A, Piotrowska, N, Wagner, R. 2006. Carbon and oxygen isotope composition of organic matter and carbonates in recent lacustrine sediments. Geochronometria 25:7794.Google Scholar
Stawecki, K, Zdanowski, B, Dunalska, J. 2003. Seasonal changes in phosphorus concentrations in the waters of Lake Wigry. Limnological Review 3:217–22.Google Scholar
Zawisza, E, Szeroczyńska, K. 2007. The development history of Wigry Lake as shown by subfossil Cladocera. Geochronometria 29:6774.Google Scholar