Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-9ng7f Total loading time: 1.889 Render date: 2021-06-13T01:07:42.540Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Article contents

Atmospheric Radiocarbon for the Period 1950–2010

Published online by Cambridge University Press:  09 February 2016

Quan Hua
Affiliation:
Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
Mike Barbetti
Affiliation:
Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
Andrzej Z Rakowski
Affiliation:
Leibniz Laboratory for Radiometric Dating and Isotope Research, University of Kiel, Germany
Corresponding
E-mail address:
Rights & Permissions[Opens in a new window]

Abstract

We present a compilation of tropospheric 14CO2 for the period 1950–2010, based on published radiocarbon data from selected records of atmospheric CO2 sampling and tree-ring series. This compilation is a new version of the compilation by Hua and Barbetti (2004) and consists of yearly summer data sets for zonal, hemispheric, and global levels of atmospheric 14C. In addition, compiled (and extended) monthly data sets for 5 atmospheric zones (3 in the Northern Hemisphere and 2 in the Southern Hemisphere) are reported. The annual data sets are for use in regional and global carbon model calculations, while the extended monthly data sets serve as calibration curves for 14C dating of recent, short-lived terrestrial organic materials.

Type
Research Article
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Alkass, K, Buchholz, BA, Druid, H, Spalding, KL. 2011. Analysis of 14C and 13C in teeth provides precise birth dating and clues to geographical origin. Forensic Science International 209(1–3):3441.CrossRefGoogle ScholarPubMed
Berger, R, Libby, WF. 1966. UCLA radiocarbon dates V. Radiocarbon 8:467–97.CrossRefGoogle Scholar
Berger, R, Libby, WF. 1967. UCLA radiocarbon dates VI. Radiocarbon 9:477504.CrossRefGoogle Scholar
Berger, R, Libby, WF. 1968. UCLA radiocarbon dates VIII. Radiocarbon 10(2):402–16.Google Scholar
Berger, R, Libby, WF. 1969. UCLA radiocarbon dates IX. Radiocarbon 11(1):194209.CrossRefGoogle Scholar
Berger, R, Fergusson, GJ, Libby, WF. 1965. UCLA radiocarbon dates IV. Radiocarbon 7:336–71.CrossRefGoogle Scholar
Berger, R, Jackson, TB, Michael, R, Suess, HE. 1987. Radiocarbon content of tropospheric CO2 at China Lake, California 1977–1983. Radiocarbon 29(1):1823.CrossRefGoogle Scholar
Bhardwaj, RD, Curtis, MA, Spalding, KL, Buchholz, BA, Fink, D, Björk-Eriksson, T, Nordborg, C, Gage, FH, Druid, H, Eriksson, PS, Frisén, J. 2006. Neocortical neurogenesis in humans is restricted to development. Proceedings of the National Academy of Sciences of the USA 103(33):12,5648.CrossRefGoogle Scholar
Bowman, DMJS, Prior, LD, Tng, D, Hua, Q, Brodribb, TJ. 2011. Continental-scale climatic drivers of growth ring variability in an Australian conifer. Trees - Structure and Function 25(5):925–34.CrossRefGoogle Scholar
Brailsford, G, Nichol, S. 2012. NIWA Baring Head (Wellington) Δ14C data from December 1954 to March 2011, World Data Centre for Greenhouse Gases. Available at URL: http://ds.data.jma.go.jp/gmd/wdcgg/cgi-bin/wdcgg/download.cgi?indeNIWA&para=14CO2&param=200802010003&select=inventory.Google Scholar
Broecker, WS, Peng, TH, Engh, R. 1980. Modeling the carbon system. Radiocarbon 22(3):565–98.CrossRefGoogle Scholar
Bruun, S, Six, J, Jensen, LS, Paustian, K. 2005. Estimating turnover of soil organic carbon fractions based on radiocarbon measurements. Radiocarbon 47(1):99113.CrossRefGoogle Scholar
Buchholz, BA, Spalding, KL. 2010. Year of birth determination using radiocarbon dating of dental enamel. Surface and Interface Analysis 42(5):398401.CrossRefGoogle ScholarPubMed
Clarke, LJ, Robinson, SA, Hua, Q, Ayre, DJ, Fink, D. 2012. Radiocarbon bomb spike reveals biological effects of Antarctic climate change. Global Change Biology 18(1):301–10.CrossRefGoogle Scholar
Currie, KI, Brailsford, G, Nichol, S, Gomez, A, Sparks, R, Lassey, KR, Riedel, K. 2011. Tropospheric 14CO2 at Wellington, New Zealand: the world's longest record. Biogeochemistry 104(1–3):522.CrossRefGoogle Scholar
Damon, PE, Cheng, S, Linick, TW. 1989. Fine and hyper-fine structure in the spectrum of secular variations of atmospheric 14C. Radiocarbon 31(3):704–18.CrossRefGoogle Scholar
Druffel, ERM. 1997. Geochemistry of corals: proxies of past ocean chemistry, ocean circulation, and climate. Proceedings of the National Academy of Sciences of the USA 94(16):8354–61.CrossRefGoogle ScholarPubMed
Druffel, EM, Suess, HE. 1983. On the radiocarbon record in banded corals: exchange parameters and net transport of 14CO2 between atmosphere and surface ocean. Journal of Geophysical Research 88(C2):1271–80.CrossRefGoogle Scholar
Ehleringer, JR, Casale, JF, Barnette, JE, Xu, X, Lott, MJ, Hurley, J. 2012. 14C analyses quantify time lag between coca leaf harvest and street-level seizure of cocaine. Forensic Science International 214(1–3):712.CrossRefGoogle ScholarPubMed
English, NB, Dettman, DL, Williams, DG. 2010. A 26-year stable isotope record of humidity and El Niño-enhanced precipitation in the spines of saguaro cactus, Carnegiea gigantea. Palaeogeography, Palaeoclimatology, Palaeoecology 293(1–2):108–19.Google Scholar
Fellner, J, Rechberger, H. 2009. Abundance of 14C in biomass fractions of wastes and solid recovered fuels. Waste Management 29(5):1495–503.CrossRefGoogle Scholar
Fichtler, E, Clark, DA, Worbes, M. 2003. Age and long-term growth of trees in an old-growth tropical rain forest, based on analyses of tree rings and 14C. Biotropica 35(3):306–17.CrossRefGoogle Scholar
Graven, HD, Guilderson, TP, Keeling, RF. 2012a. Observations of radiocarbon in CO2 at La Jolla, California, USA 1992–2007: analysis of the long-term trend. Journal of Geophysical Research 117: D02302, doi::10.1029/2011JD016533.CrossRefGoogle Scholar
Graven, HD, Guilderson, TP, Keeling, RF. 2012b. Observations of radiocarbon in CO2 at seven global sampling sites in the Scripps flask network: analysis of spatial gradients and seasonal cycles. Journal of Geophysical Research 117: D02303, doi::10.1029/2011JD016535.CrossRefGoogle Scholar
Hertelendi, E, Csongor, E. 1982. Anthropogenic 14C excess in the troposphere between 1951 and 1978 measured in tree rings. Radiochemical and Radioanalytical Letters 56:103–10.Google Scholar
Hodge, E, McDonald, J, Fischer, M, Redwood, D, Hua, Q, Levchenko, V, Waring, C, Drysdale, R, Fink, D. 2011. Using the 14C bomb pulse to date young speleothems. Radiocarbon 53(2):345–57.CrossRefGoogle Scholar
Hua, Q. 2009. Radiocarbon: a chronological tool for the recent past. Quaternary Geochronology 4(5):378–90.CrossRefGoogle Scholar
Hua, Q, Barbetti, M. 2004. Review of tropospheric bomb radiocarbon data for carbon cycle modeling and age calibration purposes. Radiocarbon 46(3):1273–98.CrossRefGoogle Scholar
Hua, Q, Barbetti, M. 2007. Influence of atmospheric circulation on regional 14CO2 differences. Journal of Geophysical Research 112: D19102, doi::10.1029/2006JD007898.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Worbes, M, Head, J, Levchenko, VA. 1999. Review of radiocarbon data from atmospheric and tree ring samples for the period 1945–1997 AD. IAWA Journal 20:261–83.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Jacobsen, GE, Zoppi, U, Lawson, EM. 2000. Bomb radiocarbon in annual tree rings from Thailand and Tasmania. Nuclear Instruments and Methods in Physics Research B 172(1–4):359–65.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Zoppi, U, Chapman, DM, Thomson, B. 2003. Bomb radiocarbon in tree rings from northern New South Wales, Australia: implications for dendrochronology, atmospheric transport and air-sea exchange of CO2 . Radiocarbon 45(3):431–47.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Zoppi, U. 2004. Radiocarbon in annual tree rings from Thailand during the pre-bomb period, AD 1938–1954. Radiocarbon 46(2):925–32.CrossRefGoogle Scholar
Hua, Q, McDonald, J, Redwood, D, Drysdale, R, Lee, S, Fallon, S, Hellstrom, J. 2012a. Robust chronological reconstruction for young speleothems using radiocarbon. Quaternary Geochronology 14:6780.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Levchenko, VA, D'Arrigo, RD, Buckley, BM, Smith, AM. 2012b. Monsoonal influences on Southern Hemisphere 14CO2 . Geophysical Research Letters 39: L19806, doi::10.1029/2012GL052971.CrossRefGoogle Scholar
Kikata, Y, Yonenobu, H, Morishita, F, Hattori, Y. 1992. 14C concentrations in tree stems. Bulletin of the Nagoya University Furukawa Museum 8:41–6. In Japanese.Google Scholar
Kikata, Y, Yonenobu, H, Morishita, F, Hattori, Y, Marsoem, SN. 1993. 14C concentrations in tree stems I. Mokuzai Gakkaishi 39(3):333–7. In Japanese.Google Scholar
Koarashi, J, Atarashi-Andoh, M, Ishizuka, S, Miura, S, Saito, T, Hirai, K. 2009. Quantitative aspects of heterogeneity in soil organic matter dynamics in a cool-temperate Japanese beech forest: a radiocarbon-based approach. Global Change Biology 15(3):631–42.CrossRefGoogle Scholar
Levin, I, Hesshaimer, V. 2000. Radiocarbon – a unique tracer of global carbon cycle dynamics. Radiocarbon 42(1):6980.CrossRefGoogle Scholar
Levin, I, Kromer, B. 1997. Twenty years of atmospheric 14CO2 observations at Schauinsland station, Germany. Radiocarbon 39(2):205–18.CrossRefGoogle Scholar
Levin, I, Kromer, B. 2004. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46(3):1261–72.CrossRefGoogle Scholar
Levin, I, Kromer, B, Schoch-Fischer, H, Bruns, M, Münnich, M, Berdau, D, Vogel, JC, Münnich, KO. 1985. 25 years of tropospheric 14C observations in central Europe. Radiocarbon 27(1):119.CrossRefGoogle Scholar
Levin, I, Kromer, B, Francey, RJ. 1996. Continuous measurements of 14C in atmospheric CO2 at Cape Grim. In: Francey, RJ, Dick, AL, Derek, N, editors. Baseline Atmospheric Program Australia 1994–1995. Melbourne: CSIRO. p 106–7.Google Scholar
Levin, I, Kromer, B, Francey, RJ. 1999. Continuous measurements of 14C in atmospheric CO2 at Cape Grim, 1995–1996. In: Grass, JL, Derek, N, Tindale, NW, Dick, AL, editors. Baseline Atmospheric Program Australia 1996. Melbourne: Bureau of Meteorology and CSIRO Atmospheric Research, p 8990.Google Scholar
Levin, I, Kromer, B, Schmidt, M, Sartorius, H. 2003. A novel approach for independent budgeting of fossil fuels CO2 over Europe by 14CO2 observations. Geophysical Research Letters 30(23):2194, doi:10.1029/2003GL018477.CrossRefGoogle Scholar
Levin, I, Naegler, T, Kromer, B, Diehl, M, Francey, RJ, Gomez-Pelaez, AJ, Steele, LP, Wagenbach, D, Weller, R, Worthy, DE. 2010. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2 . Tellus B 62(1):2646.CrossRefGoogle Scholar
Levin, I, Kromer, B, Steele, LP, Porter, LW. 2011. Continuous measurements of 14C in atmospheric CO2 at Cape Grim, 1997–2008. In: Derek, N, Krummel, PB, editors. Baseline Atmospheric Program Australia 2007–2008. Melbourne: Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research. p 56–9.Google Scholar
Linacre, E, Geerts, B. 1997. Climates and Weather Explained. London: Routledge.CrossRefGoogle Scholar
Lovelock, CE, Sorrell, B, Hancock, N, Hua, Q, Swales, A. 2010. Mangrove forest and soil development on a rapidly accreting shore in New Zealand. Ecosystems 13(3):437–51.CrossRefGoogle Scholar
Lynnerup, N, Kjeldsen, H, Heegaard, S, Jacobsen, C, Heinemeier, J. 2008. Radiocarbon dating of the human eye lens crystallines reveal proteins without carbon turnover throughout life. PloS ONE 3(1):e1529, doi:10.1371/journal.pone.0001529.CrossRefGoogle ScholarPubMed
Manning, MR, Lowe, DC, Melhuish, WH, Sparks, RJ, Wallace, G, Brenninkmeijer, CAM, McGrill, RC. 1990. The use of radiocarbon measurements in atmospheric studies. Radiocarbon 32(1):3758.CrossRefGoogle Scholar
McGregor, GR, Nieuwolt, S. 1998. Tropical Climatology—An Introduction to the Climates of the Low Latitudes. Hoboken: John Wiley.Google Scholar
Meijer, HAJ, Pertuisot, MH, van der Plicht, J. 2006. Highaccuracy 14C measurements for atmospheric CO2 samples by AMS. Radiocarbon 48(3):355–72.CrossRefGoogle Scholar
Mohn, J, Szidat, S, Fellner, J, Rechberger, H, Quartier, R, Buchmann, B, Emmenegger, L. 2008. Determination of biogenic and fossil CO2 emitted by waste incineration based on 14CO2 and mass balances. Bioresource Technology 99(14):6471–9.CrossRefGoogle Scholar
Mohn, J, Szidat, S, Zeyer, K, Emmenegger, L. 2012. Fossil and biogenic CO2 from waste incineration based on a yearlong radiocarbon study. Waste Management 32(8):1516–20.CrossRefGoogle Scholar
Muraki, Y, Kocharov, G, Nishiyama, T, Naruse, Y, Murata, T, Masuda, K, Arslanov, KhA. 1998. The new Nagoya radiocarbon laboratory. Radiocarbon 40(1):177–82.Google Scholar
Murphy, JO, Lawson, EM, Fink, D, Hotchkis, MAC, Hua, Q, Jacobsen, GE, Smith, AM, Tuniz, C. 1997. 14C AMS measurements of the bomb pulse in N- and S-hemisphere tropical trees. Nuclear Instruments and Methods in Physics Research B 123(1–4):447–50.CrossRefGoogle Scholar
Nakamura, T, Nakai, N, Ohishi, S. 1987a. Applications of environmental 14C measured by AMS as a carbon tracer. Nuclear Instruments and Methods in Physics Research B 29(1–2):355–60.CrossRefGoogle Scholar
Nakamura, T, Nakai, N, Kimura, M, Ohishi, S, Hattori, Y, Kikata, Y. 1987b. Variations in 14C concentrations of tree rings (1945–1983). Chikyu-Kagaku (Geochemistry) 21:712. In Japanese.Google Scholar
Nakamura, T, Kojima, S, Ohta, T, Nishida, M, Rakowski, A, Ikeda, A, Oda, H, Niu, E. 2007. Application of AMS 14C measurements to criminal investigations. Journal of Radioanalytical and Nuclear Chemistry 272(2):327–32.CrossRefGoogle Scholar
Nydal, R. 1968. Further investigation on the transfer of radiocarbon in nature. Journal of Geophysical Research 73(12):3617–35.CrossRefGoogle Scholar
Nydal, R, Gislefoss, JS. 1996. Further application of bomb 14C as a tracer in the atmosphere and ocean. Radiocarbon 38(3):389406.CrossRefGoogle Scholar
Nydal, R, Lövseth, K. 1996. Carbon-14 measurement in atmospheric CO2 from Northern and Southern Hemisphere sites, 1962–1993. Carbon Dioxide Information Analysis Center, World Data Center-A for Atmospheric Trace Gases, Oak Ridge National Laboratory, Tennessee.CrossRefGoogle Scholar
Oeschger, H, Siegenthaler, U, Schotterer, U, Gugelmann, A. 1975. A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27(2):168–92.CrossRefGoogle Scholar
Palstra, SWL, Meijer, HAJ. 2010. Carbon-14 based determination of the biogenic fraction of industrial CO2 emissions – application and validation. Bioresource Technology 101(10):3702–10.CrossRefGoogle Scholar
Park, JH, Kim, JC, Cheoun, MK, Kim, IC, Youn, M, Liu, YH, Kim, ES. 2002. 14C level at Mt Chiak and Mt Kyeryong in Korea. Radiocarbon 44(2):559–66.CrossRefGoogle Scholar
Pearson, S, Hua, Q, Allen, K, Bowman, DMJS. 2011. Validating putatively cross-dated Callitris tree-ring chronologies using bomb-pulse radiocarbon analysis. Australian Journal of Botany 59(1):717.CrossRefGoogle Scholar
Poussart, PF, Schrag, DP. 2005. Seasonally resolved stable isotope chronologies from northern Thailand deciduous trees. Earth and Planetary Science Letters 235(3–4):752–65.CrossRefGoogle Scholar
Quideau, SA, Anderson, MA, Graham, RC, Chadwick, OA, Trumbore, SE. 2000. Soil organic matter processes: characterization by C-13 NMR and C-14 measurements. Forest Ecology and Management 138:1927.CrossRefGoogle Scholar
Rabbi, SMF, Hua, Q, Daniel, H, Lockwood, PV, Wilson, BR, Young, IM. 2013. Mean residence time of soil organic carbon in aggregates under contrasting land uses based on radiocarbon measurements. Radiocarbon 55(1):127–39.CrossRefGoogle Scholar
Rakowski, AZ, Nadeau, M-J, Nakamura, T, Pazdur, A, Paweczyk, S, Piotrowska, N. 2013. Radiocarbon method in environmental monitoring of CO2 emission. Nuclear Instruments and Methods in Physics Research B 294:503–7.CrossRefGoogle Scholar
Randerson, JT, Enting, IG, Schuur, EAG, Caldeira, K, Fung, IY. 2002. Seasonal and latitudinal variability of troposphere A14CO2: post bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial biosphere. Global Biogeochemical Cycles 16(4):1112, doi:10.1029/2002GB001876.CrossRefGoogle Scholar
Reimer, PJ, Brown, TA, Reimer, RW. 2004. Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46(3):1299–304.CrossRefGoogle Scholar
Spalding, KL, Bhardwaj, RD, Buchholz, BA, Druid, H, Frisen, J. 2005. Retrospective birth dating of cells in humans. Cell 122(1):133–43.CrossRefGoogle ScholarPubMed
Spalding, KL, Arner, E, Westermark, PO, Bernard, S, Buchholz, BA, Bergmann, O, Blomqvist, L, Hoffstedt, J, Näslund, E, Britton, T, Concha, H, Hassan, M, Rydén, M, Jonas Frisén, J, Arner, P. 2008. Dynamics of fat cell turnover in humans. Nature 453(7196):783–7.CrossRefGoogle ScholarPubMed
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):353–63.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ, Braziunas, TF. 1998. Radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40(3):1127–51.CrossRefGoogle Scholar
Telegadas, K. 1971. The seasonal atmospheric distribution and inventories of excess carbon-14 from March 1955 to July 1969. US Atomic Energy Commission Report HASL-243.Google Scholar
Trumbore, S. 2009. Radiocarbon and soil carbon dynamics. Annual Review of Earth and Planetary Sciences 31:4766.CrossRefGoogle Scholar
Turnbull, JC, Lehman, SJ, Miller, JB, Sparks, RJ, Southon, JR, Tans, PP. 2007. A new high precision 14CO2 time series for North American continental air. Journal of Geophysical Research 112: D11310, doi::10.1029/2006JD008184.CrossRefGoogle Scholar
Ubelaker, DH, Parra, RC. 2011. Radiocarbon analysis of dental enamel and bone to evaluate date of birth and death: perspective from the Southern Hemisphere. Forensic Science International 208(1–3):103–7.CrossRefGoogle ScholarPubMed
Vieira, S, Trumbose, S, Camargo, PB, Selhorst, D, Chambers, JQ, Higuchi, N, Martinelli, LA. 2005. Slow growth rates of Amazonian trees: consequences for carbon cycling. Proceedings of the National Academy of Sciences of the USA 102(51):18,5027.CrossRefGoogle ScholarPubMed
Vogel, JC, Marais, M. 1971. Pretoria radiocarbon dates I. Radiocarbon 13(2):378–94.CrossRefGoogle Scholar
Wang, PX. 2009. Global monsoon in a geological perspective. Chinese Science Bulletin 54(7):1113–36.Google Scholar
Wild, E, Golser, R, Hille, P, Kutschera, W, Priller, A, Puchegger, S, Rom, W, Steier, P. 1998. First 14C results from archaeological and forensic studies at the Vienna environmental research accelerator. Radiocarbon 40(1):273–81.Google Scholar
Willkomm, H, Erlenkeuser, H. 1968. University of Kiel radiocarbon measurements III. Radiocarbon 10(2):328–32.CrossRefGoogle Scholar
Worbes, M, Junk, WJ. 1989. Dating tropical trees by means of 14C from bomb tests. Ecology 70(2):503–7.CrossRefGoogle Scholar
Yamada, Y, Yasuike, K, Komura, K. 2005. Temporal variation of carbon-14 concentration in tree-ring cellulose for the recent 50 years. Journal of Nuclear and Radiochemical Sciences 6(2):135–8.CrossRefGoogle Scholar
Zimnoch, M, Jelen, D, Galkowski, M, Kuc, T, Necki, J, Chmura, L, Gorczyca, Z, Jasek, A, Rozanski, K. 2012. Partitioning of atmospheric carbon dioxide over Central Europe: insights from combined measurements of CO2 mixing ratios and their carbon isotope composition. Isotopes in Environmental and Health Studies 48(3):421–33.CrossRefGoogle ScholarPubMed
Zoppi, U, Skopec, Z, Skopec, J, Jones, G, Fink, D, Hua, Q, Jacobsen, G, Tuniz, C, Williams, A. 2004. Forensic applications of 14C bomb-pulse dating. Nuclear Instruments and Methods in Physics Research B 223–224:770–5.Google Scholar
Supplementary material: File

Hua et al. supplementary material

Supplementary Material

Download Hua et al. supplementary material(File)
File 365 KB
You have Access
552
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Atmospheric Radiocarbon for the Period 1950–2010
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Atmospheric Radiocarbon for the Period 1950–2010
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Atmospheric Radiocarbon for the Period 1950–2010
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *