Hostname: page-component-797576ffbb-58z7q Total loading time: 0 Render date: 2023-12-09T19:32:13.677Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Stromatolite Growth in Lagoa Vermelha, Southeastern Coast of Brazil: Evidence of Environmental Changes

Published online by Cambridge University Press:  27 November 2017

Carla Carvalho*
Departamento de Geoquímica, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil Laboratório de Radiocarbono (LAC-UFF), Instituto de Física, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
Maria Isabela N. Oliveira
Laboratório de Radiocarbono (LAC-UFF), Instituto de Física, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
Kita Macario
Laboratório de Radiocarbono (LAC-UFF), Instituto de Física, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil Departamento de Física, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
Renato B. Guimarães
Departamento de Física, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil Laboratório de Difração de Raios X (LDRX – UFF), Instituto de Física, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
Carolina N Keim
Instituto de Microbiologia Paulo de Góes, Rio de Janeiro Federal University (UFRJ), Rio de Janeiro, Brazil
Elisamara Sabadini-Santos
Departamento de Geoquímica, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
Mirian A C Crapez
Departamento de Biologia Marinha, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
*Corresponding author. Email:


Among the oldest remains of living beings to have inhabited the Earth’s surface, there are the stromatolites—laminated sedimentary rocks associated with lithified mats of layered phototrophic microbial communities—which grow in specific environmental conditions. In the present work, we study a recent carbonatic stromatolite from Lagoa Vermelha (Rio de Janeiro, Brazil), a shallow coastal hypersaline lagoon. X-ray diffraction was associated to a depth chronological model defining three different sections based on changes in mineral composition of the stromatolite with increased dolomite content. Although a mean growth rate of 0.19±0.03 mm/yr is observed, the model discloses decreasing growth rates among the sections. Since dolomite formation can be related to high availability of Mg+2, confirmed by an expressive presence of (Ca, Mg)CO3, the lower growth rates were associated to a more arid environment, until approximately 1440 cal AD, with higher temperatures and consequently promoting water evaporation and salinity enhancement.

Research Article
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Almeida, CM, Barbosa, CF, Cordeiro, RC, Seoane, JCS, Fermino, GM, Silva, PO, Turcq, BJ. 2013. Palaeoecology of a 3-kyr biosedimentary record of a coral reef-supporting carbonate shelf. Continental Shelf Research 70:168176.Google Scholar
Anjos, A. 2004. Processo de precipitação de dolomita na Lagoa do Brejo do Espinho: uma contribuição para a reconstrução ambiental [PhD dissertation]. Niterói: Universidade Federal Fluminense. 167 p.Google Scholar
Andersen, DT, Sumner, DY, Hames, I, Webter-Brown, J, McKay, CP. 2011. Discovery of large conical stromatolites in Lake Untersee, Antarctica. Geobiology 9(3):280293.Google Scholar
Aguilera, O, Belem, AL, Angelica, R, Macario, K, Crapez, M, Nepomuceno, A, Paes, E, Tenório, MC, Dias, F, Souza, R, Rapagnã, L, Carvalho, C, Silva, E. 2015. Fish bone diagenesis in southeastern Brazilian shell mounds and its importance for paleoenvironmental studies. Quaternary International 391:1825.Google Scholar
Bahniuk, A, Mckenzie, J, Montluçon, D, Eglinton, T, França, A, Matsuda, N, Anjos, S, Vasconcelos, C. 2013. Coupled molecular and 14C Studies of microbial carbonate laminae formation and growth rates in modern dolomitic stromatolites from Lagoa Salgada, Brazil. In: Microbial Carbonates in Space and Time: Implications for Global Exploration and Production. Conference, 19–20 June 2013, London. p 94–5.Google Scholar
Barbiére, EB. 1985. Condições climáticas dominantes na porção oriental da lagoa de Araruama (RJ) e suas implicações na diversidades do teor de salinidade. Caderno de Ciencia da Terra. 59.Google Scholar
Barroso, LV, Bernardes, MC. 1995. Um patrimônio ameaçado: poluição, invasão e turismo sem controle Ameaçam as Lagoas fluminenses. Ciência Hoje 19(110):7074.Google Scholar
Botz, RW, Von Der Borch, CC. 1984. Stable isotope study of carbonate sediments from the Coorong Area, South Australia. Sedimentology 31:837849.Google Scholar
Bronk Ramsey, C. 2009a. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.Google Scholar
Bronk Ramsey, C. 2009b. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51(3):10231045.Google Scholar
Bronk Ramsey, C, Lee, S. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55(2):720730.Google Scholar
Carvalho, C, Macario, K, De Oliveira, MI, Oliveira, F, Chanca, I, Alves, E, Souza, R, Aguilera, O, Douka, K. 2015. Potential use of archaeological snail shells for the calculation of local marine reservoir effect. Radiocarbon 57(3):459467.Google Scholar
Castro, MD, Macario, KD, Gomes, PRS. 2015. New software for AMS data analysis developed at IF-UFF Brazil. Nuclear Instruments and Methods in Physics Research B 361:526530.Google Scholar
Coe Netto, R. 1984. Etude morphogenetique dês formations Cenozoiques de la region de Cabo Frio (Bresil) [doctoral thesis]. Universite de Bordeaux. 122 p.Google Scholar
Dupraz, C, Visscher, PT. 2005. Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiology 13(9):429438.Google Scholar
Esteves, FA. 1998. Ecologia das Lagoas Costeiras do Parque Nacional da Restinga de Jurubatiba e do Município de Macaé (RJ). Rio de Janeiro: Interciência. p 56.Google Scholar
Goni, MA, Aceves, H, Benitez-Nelson, B, Tappa, E, Thunell, R, Black, DE, Muller-Karger, F, Astor, Y, Varela, R. 2009. Oceanographic and climatologic controls on the compositions and fluxes of biogenic materials in the water column and sediments of the Cariaco Basin over the Late Holocene. Deep-Sea Research I: Oceanographic Research Papers 56(4):614640.Google Scholar
Gutierrez, D, Sifeddine, A, Field, DB, Ortlieb, L, Vargas, G, Chavez, F P, Velazco, F, Ferreira, V, Tapia, P, Salvatteci, R, Boucher, H, Morales, MC, Valdes, J, Reyss, J-L, Campusano, A, Boussafir, M, Mandeng-Yogo, M, Garcia, M, Baumgartner, T. 2009. Rapid reorganization in ocean biogeochemistry off Peru towards the end of the Little Ice Age. Biogeosciences 6(5):835848.Google Scholar
Höhn, A, Tobschall, HJ, Maddock, JEL. 1986. Biochemistry of a hypersaline lagoon east of Rio de Janeiro, Brazil. The Science of the Total Environment 58(186):175186.Google Scholar
Jansen, DC, Cavalcanti, LF, Lamblém, HS. 2012. Mapa de potencialidade de ocorrencia de cavernas no Brasil, na escala de 1:2.500.000. Revista Brasileira de Espeleologia 1(2):4257.Google Scholar
Macario, KD, Gomes, PRS, Anjos, RM, Carvalho, C, Linares, R, Alves, EQ, Oliveira, FM, Castro, M, Chanca, IS, Silveira, MFM, Pessenda, LCR, Moraes, LMB, Campos, TB, Cherinsky, A. 2013. The Brazilian AMS Radiocarbon Laboratory (LAC-UFF) and the intercomparison of results with CENA and UGAMS. Radiocarbon 55(2):325330.Google Scholar
Macario, KD, Oliveira, FM, Carvalho, C, Santos, GM, Xu, X, Chanca, IS, Alves, EQ, Jou, R, Oliveira, MI, Brandão, B, Moreira, VN, Muniz, M, Linares, R, Gomes, PRS, Anjos, RM, Castro, MD, Anjos, L, Marques, AN, Rodrigues, LF. 2015. Advances in the graphitization protocol at the radiocarbon laboratory of the Universidade Federal Fluminense (LAC-UFF) in Brazil. Nuclear Instruments and Methods in Physics Research B 361:402405.Google Scholar
Mahiques, M, Bícego, MC, Silveira, ICA, Sousa, SHM, Lourenço, RA, Fukumoto, MM. 2005. Modern sedimentation in the Cabo Frio upwelling system, Southeastern Brazilian Shelf. Anais da Academia Brasileira de Ciências 77:535548.Google Scholar
Mann, M, Zhang, Z, Rutherford, S, Bradley, RS, Hughes, MK, Shindell, D, Ammann, C, Faluvegi, G, Ni, F. 2009. Global signatures and dynamical origins of the Little Ice Age and Medieval climate anomaly. Science 326:12561260.Google Scholar
Marean, CW. 1991. Measuring the post-depositional destruction of bone in archaeological assemblages. Journal of Archaeological Science 18:677694.Google Scholar
Mayewski, PA, Rohling, EE, Stager, C, Karlén, W, Maasch, KA, Meeker, LD, Meyerson, EA, Gasse, F, van Kreveld, S, Holmgren, K, Lee-Thorp, J, Rosqvist, G, Rack, F, Staubwasser, M, Schneider, RR, Steig, EJ. 2004. Holocene climate variability. Quaternary Research 62(3):243255.Google Scholar
Moreira, I, Patchineelam, R, Rebello, AL. 1987. Preliminary investigations on the occurrence of diagenetic dolomite in surface sediments of Lagoa Vermelha, Brazil. Geojournal 14:357360.Google Scholar
Moreira, N, Walter, L, Vasconcelos, C, McKenzie, J, McCall, P. 2004. Role of sulfide oxidation in dolomitization: sediment and pore-water geochemistry of a modern hypersaline lagoon system. Geology 32:701704.Google Scholar
Moreira-Turcq, P. 2000. Impact of a low salinity year on the metabolism of a hypersaline coastal lagoon (Brazil). Hydrobiologia 429(1–3):133140.Google Scholar
Müller, G, Irion, G, Förstner, U. 1972. Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrine environment. Naturwissenschaften 59:158164.Google Scholar
Oliveira, FM, Macario, KD, Simonassi, JC, Gomes, PRS, Anjos, RM, Carvalho, C, Linares, R, Alves, EQ, Castro, MD, Souza, RCCL, Marques, AN Jr. 2014. Evidence of strong storm events possibly related to the Little Ice Age in sediments on the southern coast of Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 415:233239.Google Scholar
Paull, CK, Neumann, AC, Bebout, B, Zabielski, V, Showers, W. 1992. Growth rate and stable isotopic character of modern stromatolites from San Salvador, Bahamas. Palaeogeography, Palaeoelimatology, Palaeoecology 95:335344.Google Scholar
Petryshyn, VA, Corsetti, FA, Berelson, WM, Beaumont, W, Lund, SP. 2012. Stromatolite lamination frequency, Walker Lake, Nevada: implications for stromatolites as biosignatures. Geology 40:499502.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Toby, BH, Von Dreele, RBJ. 2013. GSAS-II: the genesis of a modern open-source all-purpose crystallography software package. Journal of Applied Crystallography 46:544549.Google Scholar
Santelli, RCL. 1988. Estudos De Isótopos Estáveis Em Sedimentos Carbonáticos Da Lagoa Vermelha – RJ [doctoral thesis]. Programa De Pós-Graduação Em Química, Pontifícia Universidade Católica Do Rio De Janeiro. 95 p.Google Scholar
Silva e Silva, LH. 2002. Contribuição ao Conhecimento da Composição Microbiana e Química das Estruturas Estromatolíticas da Lagoa Salgada, Quaternário do Rio de Janeiro, Brasil [doctoral thesis]. Rio de Janeiro: Instituto de Geociências, Universidade Federal do Rio de Janeiro.Google Scholar
Souto, DD, Lessa, D, Albuquerque, ALS, Sifeddine, A, Turcq, BJ, Barbosa, CF. 2011. Marine sediments from southeastern Brazilian continental shelf: a 1200 year record of upwelling productivity. Palaeogeography, Palaeoclimatology, Palaeoecology 299(1–2):4955.Google Scholar
Souza, CRG, Souza Filho, PWM, Esteves, SL, Vital, H, Dillenburg, SR, Patchineelam, SM, Addad, JE. 2005. Praias arenosas e erosão costeira. In. Quaternário do Brasil. Ribeirão Preto (SP), Brazil: Editora Holos. p 130152.Google Scholar
Spadafora, A, Perri, E, Mckenzie, JA, Vasconcelos, C. 2010. Microbial biomineralization processes forming modern Ca:Mg carbonate stromatolites. Sedimentology 57:2740.Google Scholar
Van Lith, Y, Vasconcelos, C, Warthmann, R, Martins, JCF, McKenzie, JA. 2002. Bacterial sulfate reduction and salinity: two controls on dolomite precipitation in Lagoa Vermelha and Brejo do Espinho (Brazil). Hydrobiologia 485:3549.Google Scholar
Vasconcelos, CO. 1988. Sedimentologia e geoquímica na Lagoa Vermelha – um exemplo de formação e diagênese de carbonatos [dissertation]. Rio de Janeiro: Universidade Federal Fluminense, Niterói.Google Scholar