Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-n9pbb Total loading time: 0.864 Render date: 2021-09-18T11:55:32.027Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Radiocarbon Marine Reservoir Effect on the Northwestern Coast of Cuba

Published online by Cambridge University Press:  19 August 2016

M Diaz
Affiliation:
Departamento de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, S/N, Niterói, 24210-346, RJ, Brazil Instituto Superior de Tecnologías y Ciencias Aplicadas, InSTEC, Quinta de los Molinos, Ave. Salvador Allende y Luaces, Plaza de la Revolución, Havana, Cuba
K D Macario*
Affiliation:
Departamento de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, S/N, Niterói, 24210-346, RJ, Brazil
P R S Gomes
Affiliation:
Departamento de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, S/N, Niterói, 24210-346, RJ, Brazil
L Álvarez-Lajonchere
Affiliation:
Museo Felipe Poey, Universidad de la Habana, U.H., San Lazaro y Calle L, CP 10400, Havana, Cuba
O Aguilera
Affiliation:
Departamento de Biologia Marinha, Universidade Federal Fluminense, Outeiro São João Batista, s/n, Niterói, 24001-970, RJ, Brazil
E Q Alves
Affiliation:
Departamento de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, S/N, Niterói, 24210-346, RJ, Brazil Oxford Radiocarbon Accelerator Unit, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford, OX1 3QY, United Kingdom
*Corresponding
*Corresponding author. Email: kitamacario@gmail.com.

Abstract

The regional component (∆R) of the marine reservoir effect (MRE), which is crucial for the accurate calibration of radiocarbon ages of marine-influenced samples, was determined for the Cuban northwestern coast. Fifteen different locations were studied by 14C dating of pre-bomb known-age marine shells specimens of bivalves and gastropods from the Felipe Poey Museum collection. Accelerator mass spectrometry (AMS) 14C measurements were performed at the Radiocarbon Laboratory of the Universidade Federal Fluminense (LAC-UFF) and mean ΔR values were estimated. The distribution of results indicates ∆R values from −46±38 to 140±52 14C yr and a possible pattern related to the position along the coast and ocean dynamics. We present both mean values for each region and a general ∆R of 28±13 14C yr for the northwestern coast of Cuba.

Type
14C as a Tracer of Past or Present Ocean Circulation
Copyright
© 2016 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2015 Radiocarbon Conference, Dakar, Senegal, 16–20 November 2015

References

Alves, E, Macario, K, Souza, R, Pimenta, A, Douka, K, Oliveira, F, Chanca, I, Angulo, R. 2015a. Radiocarbon reservoir corrections on the Brazilian coast from pre-bomb marine shells. Quaternary Geochronology 29:3035.CrossRefGoogle Scholar
Alves, E, Macario, K, Souza, R, Aguilera, O, Goulart, AC, Rita Scheel-Ybert, R, Bachelet, C, Carvalho, C, Oliveira, F, Douka, K. 2015b. Marine reservoir corrections on the southeastern coast of Brazil: paired samples from the Saquarema shellmound. Radiocarbon 57(4):517525.CrossRefGoogle Scholar
Arriaza, L, Hernandez, M, Lorenzo, S, Olivera, J, Rodas, L, Montesino, D, Carillo, Y, Almeida, I, Siamanca, J, Padron, JN. 2012. Modeling of marine currents around Cuban western region. Serie Oceanológica 10:1122.Google Scholar
Ascough, P, Cook, G, Dugmore, A. 2005. Methodological approaches to determining the marine radiocarbon reservoir effect. Progress in Physical Geography 29(4):532547.CrossRefGoogle Scholar
Broecker, WS, Olson, EA. 1961. Lamont radiocarbon measurements VIII. Radiocarbon 3(1):176204.CrossRefGoogle Scholar
Bronk Ramsey, C, Lee, S. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55(2):720730.CrossRefGoogle Scholar
Carvalho, C, Macario, K, De Oliveira, MI, Oliveira, F, Chanca, I, Alves, E, Souza, R, Aguilera, O, Douka, K. 2015. Potential use of archaeological snail shells for the calculation of local marine reservoir effect. Radiocarbon 57(3):459467.CrossRefGoogle Scholar
Castro, MD, Macario, K, Gomes, P. 2015. New software for AMS data analysis developed at IF-UFF Brazil. Nuclear Instruments and Methods in Physics Research B 361:526530.CrossRefGoogle Scholar
Cooper, J, Thomas, KD. 2012. Constructing Caribbean chronologies: comparative radiocarbon dating of shell and wood artefacts from Pre-Columbian sites in Cuba. Archaeometry 54(2):401425.CrossRefGoogle Scholar
Druffel, EM. 1982. Banded corals: changes in oceanic carbon-14 during the Little Ice Age. Science 218(4567):1319.CrossRefGoogle ScholarPubMed
Druffel, ERM, Robinson, LF, Griffin, S, Halley, RB, Southon, JR, Adkins, JF. 2008. Low reservoir ages for the surface ocean from mid-Holocene Florida corals. Paleoceanography 23(2):2209.CrossRefGoogle Scholar
Emilsson, I. 1971. Note on the counter-current in the Yucatan Channel and the western Cayman Sea. Geofisica Internacional 11:139149.Google Scholar
Hadden, C, Cherkinsky, A. 2015. 14C variations in pre-bomb nearshore habitats of the Florida Panhandle, USA. Radiocarbon 57(3):469477.CrossRefGoogle Scholar
Hofmann, EE, Worley, SJ. 1986. An investigation of the circulation of the Gulf of Mexico. Journal of Geophysical Research: Oceans 91(C12):14,22114,236.CrossRefGoogle Scholar
Hogg, A, Higham, T, Dahm, J. 1998. 14C dating of modern marine and estuarine shellfish. Radiocarbon 40(2):975984.CrossRefGoogle Scholar
Holland, A, Dean, J. 1977. The biology of the stout razor Clamtagelus plebeius: I. animal-sediment relationships, feeding mechanism, and community biology. Chesapeake Science 18(1):5866.CrossRefGoogle Scholar
Hughen, KA, Baillie, MGL, Bard, E, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, PJ, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. Marine04 marine radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):10591086.CrossRefGoogle Scholar
Lighty, R, Macintyre, I, Stuckenrath, R. 1982. Acropora palmata reef framework: a reliable indicator of sea level in the western Atlantic for the past 10,000 years. Coral Reefs 1(2):125130.CrossRefGoogle Scholar
Macario, KD, Gomes, PRS, Anjos, RM, Carvalho, C, Linares, R, Alves, EQ, Oliveira, FM, Castro, MD, Chanca, IS, Silveira, MFM, Pessenda, LCR, Moraes, LMB, Campos, TB, Cherkinsky, A. 2013. The Brazilian AMS Radiocarbon Laboratory (LAC-UFF) and the intercomparison of results with CENA and UGAMS. Radiocarbon 55:325330.CrossRefGoogle Scholar
Macario, KD, Souza, RCCL, Trindade, DC, Decco, J, Lima, TA, Aguilera, OA, Marques, AN, Alves, EQ, Oliveira, FM, Chanca, IS, Carvalho, C, Anjos, RM, Pamplona, FC, Silva, EP. 2014. Chronological model of a Brazilian Holocene shellmound (Sambaqui da Tarioba, Rio de Janeiro, Brazil). Radiocarbon 56(2):489499.CrossRefGoogle Scholar
Macario, KD, Oliveira, FM, Carvalho, C, Santos, GM, Xu, X, Chanca, IS, Eduardo, QA, Jou, RM, Oliveira, MI, Pereira, BB, Moreira, V, Muniz, MC, Linares, R, Gomes, PRS, Anjos, RM, Castro, MD, Anjos, L, Marques, AN, Rodrigues, LF. 2015a. Advances in the graphitization protocol at the Radiocarbon Laboratory of the Universidade Federal Fluminense (LAC-UFF) in Brazil. Nuclear Instruments and Methods in Physics Research B 361:402405.CrossRefGoogle Scholar
Macario, KD, Souza, RCCL, Aguilera, OA, Carvalho, C, Oliveira, FM, Alves, EQ, Chanca, IS, Silva, EP, Douka, K, Decco, J, Trindade, DC, Marques, AN, Anjos, RM, Pamplona, FC. 2015b. Marine reservoir effect on the southeastern coast of Brazil: results from the Tarioba shellmound paired samples. Journal of Environmental Radioactivity 143:1419.CrossRefGoogle ScholarPubMed
Ochoa, J, Sheinbaum, J, Badan, A, Candela, J, Wilson, D. 2001. Geostrophy via potential vorticity inversion in the Yucatan Channel. Journal of Marine Research 59(5):725747.CrossRefGoogle Scholar
Perez-Santos, I, Schneider, W, Fernández-Vila, L. 2015. Features and variability of the Cuban countercurrent in the Yucatan Basin, Caribbean Sea. Ciencias Marinas 41(1):6583.CrossRefGoogle Scholar
Reimer, PJ, McCormac, FG, Moore, J, McCormick, F, Murray, EV. 2002. Marine radiocarbon reservoir corrections for the mid to late Holocene in the eastern subpolar North Atlantic. The Holocene 12(2):129135.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Roksandic, M, Buhay, WM, des Armas, YC, Súarez, RR, Peros, MC, Roksandic, I, Mowat, S, Vieira, LM, Arredondo, C, Fuentes, AM, Smith, DG. 2015. Radiocarbon and stratigraphic chronology of Canímar Abajo, Matanzas, Cuba. Radiocarbon 57(5):755763.CrossRefGoogle Scholar
Russell, N, Cook, GT, Ascough, PL, Scott, EM, Dugmore, AJ. 2011. Examining the inherent variability in ∆R: new methods of presenting ∆R values and implications for MRE studies. Radiocarbon 53(2):277288.CrossRefGoogle Scholar
Simanca, J, Ramírez, O, Fernandez, L, Arriaza, L, Rodas, L, Esponda, S, Garcia, R, Alburquerque, O, Garcia, I. 2012. Variability of marine currents in the Yucatan Channel: “Cuban Side.” Cuban Countercurrent, First Part. Serie Oceanológica 10:110.Google Scholar
Stuiver, M, Braziunas, T. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137189.CrossRefGoogle Scholar
Stuiver, M, Pearson, G, Braziunas, T. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28(2B):9801021.CrossRefGoogle Scholar
Wagner, AJ, Guilderson, TP, Slowey, NC, Cole, JE. 2009. Pre-bomb surface water radiocarbon of the Gulf of Mexico and Caribbean as recorded in hermatypic corals. Radiocarbon 51(3):947954.CrossRefGoogle Scholar
Ward, GK, Wilson, SR. 1978. Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20(1):1931.CrossRefGoogle Scholar
Xu, X, Trumbore, SE, Zheng, S, Southon, JR, McDuffee, KE, Luttgen, M, Liu, JC. 2007. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: reducing background and attaining high precision. Nuclear Instruments and Methods in Physics Research B 259(1):320329.CrossRefGoogle Scholar
7
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Radiocarbon Marine Reservoir Effect on the Northwestern Coast of Cuba
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Radiocarbon Marine Reservoir Effect on the Northwestern Coast of Cuba
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Radiocarbon Marine Reservoir Effect on the Northwestern Coast of Cuba
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *