Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-5rkl9 Total loading time: 0.37 Render date: 2022-12-02T20:41:33.150Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Article contents

Radiocarbon Dating of Agrarian Terraces by Means of Buried Soils

Published online by Cambridge University Press:  19 January 2016

Arnald Puy*
Affiliation:
Institute of Geography, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany. Department of Maritime Civilizations, Recanati Institute for Maritime Studies, University of Haifa, 199 Aba Koushy Ave., Mount Carmel, Haifa 3498838, Israel.
Andrea L Balbo
Affiliation:
Climate Change and Security (CLISEC), Centre for Earth System Research and Sustainability (CEN), University of Hamburg, Grindelberg 7, Hamburg20144 Hamburg, Germany.
Olaf Bubenzer
Affiliation:
Institute of Geography, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany.
*
*Corresponding author. Email: arnald.puy@gmail.com; arnald.puy@gmail.com.

Abstract

Soils buried under terrace fills have been widely used to date the construction of ancient agrarian terraces. The reliability of the obtained radiocarbon dates entirely depends on the degree of preservation and isolation of the Ab horizons and on the amount of embedded older carbon. To assess these caveats, we analyzed 14 14C dates (11 on charred material and 3 on the bulk organic fraction) obtained from buried soils under Andalusi terrace fills in Ricote, Spain (AD 711–1492). The preservation of Ab horizons was assessed through bulk analyses [particle size distribution (PSD), carbon analyses, magnetic susceptibility (Mag Sus)] and statistics [Welch’s ANOVA, MANOVA (Wilk’s lambda) and effect size tests]. The effects of older carbon were quantified through the systematic dating of Ab horizons within the earliest terrace cluster of Ricote. Our results show that (1) Ab horizons were not disturbed nor mixed with the terrace fills above; (2) the dates determined from the bulk organic fraction were statistically significantly older than those provided by the charred material, probably due to the higher stability of the microcharcoal fraction; and (3) the earliest dates measured on charcoal clustered reliably around cal AD 989–1210, suggesting that the first Andalusi irrigated terraces of Ricote were built between the end of the 10th and the beginning of the 13th centuries AD.

Type
Research Article
Copyright
© 2016 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bal, MC, Rendu, C, Ruas, MP, Campmajo, P. 2010. Paleosol charcoal: reconstructing vegetation history in relation to agro-pastoral activities since the Neolithic. A case study in the Eastern French Pyrenees. Journal of Archaeological Science 37(8):17851797.CrossRefGoogle Scholar
Balek, CL. 2002. Buried artifacts in stable upland sites and the role of bioturbation: a review. Geoarchaeology 17(1):4151.CrossRefGoogle Scholar
Ballesteros, P, Andrade Cernadas, JM, Criado Boado, F. 2006. Formas y fechas de un paisaje agrario medieval: a Cidade da Cultura en Santiago de Compostela. Arqueología Espacial 26:193225.Google Scholar
Balsam, W, Ji, J, Chen, J. 2004. Climatic interpretation of the Luochuan and Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility. Earth and Planetary Science Letters 223(3–4):335348.CrossRefGoogle Scholar
Barceló, M, Retamero, F. 2005. Els Barrancs Tancats. L’Ordre Pagès al Sud de Menorca en Època Andalusina. Menorca: Institut Menorquí d’Estudis.Google Scholar
Barceló, M, Kirchner, H, Navarro, C. 1995. El Agua que no Duerme. Fundamentos de la Arqueología Hidráulica Andalusí. Granada: El Legado Andalusí.Google Scholar
Barceló, M, Kirchner, H, Martí, R, Torres, JM. 1998. The Design of Irrigation Systems in al-Andalus. The Cases of Guájar Faragüit (Los Guájares, Granada, Spain) and Castellitx, Aubenya and Biniatró (Balearic Islands). Bellaterra: Universitat Autònoma de Barcelona.Google Scholar
Becker-Heidmann, P, Liang-Wu, L, Scharpenseel, HW. 1988. Radiocarbon dating of organic matter fractions of a Chinese mollisol. Zeitschrift für Pflanzenernährung und Bodenkunde 151(1):3739.CrossRefGoogle Scholar
Benedict, JB. 1966. Radiocarbon dates from a stone-banked terrace in the Colorado Rocky Mountains, U. S. A. Geografiska Annaler. Series A, Physical Geography 48(1):2431.CrossRefGoogle Scholar
Bevan, A, Conolly, J, Colledge, S, Frederick, C, Palmer, C, Siddall, R, Stellatou, A. 2012. The long-term ecology of agricultural terraces and enclosed fields from Antikythera, Greece. Human Ecology 41(2):255272.CrossRefGoogle Scholar
Blott, SJ, Pye, K. 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms 26:12371248.CrossRefGoogle Scholar
Branch, N, Kemp, R, Silva, B, Meddens, F, Williams, A, Kendall, A, Pomacanchari, C. 2007. Testing the sustainability and sensitivity to climatic change of terrace agricultural systems in the Peruvian Andes: a pilot study. Journal of Archaeological Science 34(1):19.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Canti, MG. 2003. Earthworm activity and archaeological stratigraphy: a review of products and processes. Journal of Archaeological Science 30(2):135148.CrossRefGoogle Scholar
Cohen, J. 1988. Statistical Power Analysis for the Behavioral Sciences. Hillsdale: Lawrence Erlbaum Associates.Google Scholar
Dattalo, P. 2013. Analysis of Multiple Dependent Variables. Oxford: Oxford University Press.CrossRefGoogle Scholar
Eckmeier, E, van der Borg, K, Tegtmeier, U, Schmidt, MWI, Gerlach, R. 2009. Dating soil organic matter: comparison of radiocarbon ages from macrocharcoals and chemically separated charcoal carbon. Radiocarbon 51(2):437443.CrossRefGoogle Scholar
Esquilache, F. 2012. Perspectivas y problemas en la aplicación de la arqueología hidráulica a las grandes huertas fluviales. Un balance de la investigación en la huerta de Valencia. In: Castro Correa A, Gómez Castro D, González Germain G, Oller Guzmán J, Puy A, Riera Vargas R, Krystyna Starczewska K, Villagra Hidalgo N, editors. Estudiar el Pasado: Aspectos Metodológicos de la Investigación en Ciencias de la Antigüedad y de la Edad Media. Proceedings of the First Postgraduate Conference on Studies of Antiquity and Middle Ages. Oxford: BAR International Series. p 212222.Google Scholar
FAO (Food and Agriculture Organization). 2006. World Reference Base for Soil Resources. A Framework for International Classification, Correlation and Communication. Rome: FAO.Google Scholar
Faul, F, Erdfelder, E, Buchner, A, Lang, AG. 2009. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behavior Research Methods 41(4):11491160.CrossRefGoogle ScholarPubMed
Ferro-Vázquez, C, Martínez-Cortizas, A, Nóvoa-Muñoz, JC, Ballesteros-Arias, P. 2014. 1500 years of soil use reconstructed from the chemical properties of a terraced soil sequence. Quaternary International 346(30):2840.CrossRefGoogle Scholar
Fine, PM, Singer, J, Verosub, K. 1992. Use of magnetic-susceptibility measurements in assessing soil uniformity in chronosequences studies. Soil Science Society of America Journal 56(4):11951199.CrossRefGoogle Scholar
Folk, RL, Ward, WC. 1957. Brazos River bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology 27(1):326.CrossRefGoogle Scholar
Frederick, CD, Krahtopoulou, A. 2000. Deconstructing agricultural terraces: examining the influence of construction method on stratigraphy, dating and archaeological visibility. In: Halstead P, Frederick C, editors. Landscape and Land Use in Postglacial Greece . Glasgow: Sheffield Academic Press. p 7995.Google Scholar
Geyh, MA, Roeschmann, G, Wijmstra, TA, Middeldorp, AA. 1983. The unreliability of 14C dates obtained from buried sandy Podzols. Radiocarbon 25(2):409416.CrossRefGoogle Scholar
Gilet-Blein, N, Marien, G, Evin, J. 1980. Unreliability of 14C dates from organic matter of doils. Radiocarbon 22(3):919929.CrossRefGoogle Scholar
Glick, TF. 1991. Cristianos y Musulmanes en la España Medieval (711–1250). Madrid: Alianza Editorial.Google Scholar
Goldberg, P, Macphail, RI. 2006. Practical and Theoretical Geoarchaeology. Oxford: Blackwell Publishing.Google Scholar
González Villaescusa, R, Kirchner, H. 1997. La construcció d’un espai agrari drenat andalusí al Ḥawz de la madīna de Yābisa. Anàlisi morfològica, documental i arqueològica del Pla de Vila. In: Barceló M, editor. El Curs de les Aigües. Treballs sobre els Pagesos de Yâbisa (290-633H/902-1235dC). Eivissa-Formentera: Consell Insular d’Eivissa i Formentera. p 6596.Google Scholar
Guichard, P. 2001. Al-Andalus Frente a la Conquista Cristiana. Los Musulmanes de Valencia (siglos XI-XIII). Valencia: Universitat de València.Google Scholar
Guinot, E, Esquilache, F. 2012. La reorganización del paisaje agrario en la huerta de Valencia después de la conquista cristiana. El sistema hidráulico y el parcelario de Montcada y Benifaraig en el siglo XIII. Debates de Arqueología Medieval 2:229276.Google Scholar
Hammond, AP, Goh, KM, Tonkin, P. 1991. Chemical pretreatments for improving the radiocarbon dates of peats and organic silts in a gley Podzol environment: Grahams Terrace, North Westland. New Zealand. Journal of Geology and Geophysics 34:191194.CrossRefGoogle Scholar
Harfouche, R. 2006. Soil care and water management on Mediterranean slopes. An archaeopedological approach. Arqueología Espacial 26:311339.Google Scholar
Heller, F, Evans, ME. 1995. Loess magnetism. Reviews of Geophysics 33(2):211240.CrossRefGoogle Scholar
Hetier, JM, Guillet, B, Brousse, R, Delibrajs, G, Maury, RC. 1983. 14C dating of buried soils in the volcanic Chaine des Puys (France). Bulletin Volcanologique 46(2):193201.CrossRefGoogle Scholar
Hodgson, JM. 1976. Soil survey field handbook. In: Technical Monograph 5, Soil Survey. Harpenden: Rothamsted Experimental Station.Google Scholar
Holliday, VT. 2004. Soils in Archaeological Research . Oxford: Oxford University Press.Google Scholar
Jiang, Y, Li, S, Cai, D, Chen, W, Liu, Y, Yu, Z. 2014. The genesis and paleoenvironmental records of Longji agricultural terraces, southern China: a pilot study of human-environment interaction. Quaternary International 321:1221.CrossRefGoogle Scholar
Kemp, R, Branch, N, Silva, B, Meddens, F, Williams, A, Kendall, A, Vivanco, C. 2006. Pedosedimentary, cultural and environmental significance of paleosols within pre-hispanic agricultural terraces in the southern Peruvian Andes. Quaternary International 158(1):1322.CrossRefGoogle Scholar
Kirchner, H. 1997. La Construcció de l’Espai Pagès a Mayûrqa: les Valls de Bunyola, Orient, Coanegra i Alaró. Mallorca: Universitat de les Illes Balears.Google Scholar
Kirchner, H. 1998. Tierra de clanes. Espacios hidráulicos y clanes andalusíes en la isla de Yabisa (Ibiza). Arqueología Espacial 19–20:351372.Google Scholar
Kirchner, H. 2011. Archaeology of the landscape and archaeology of farmed areas in the medieval hispanic societies. Imago Temporis 5:5589.Google Scholar
Kirchner, H, Navarro, C. 1993. Objetivos, métodos y práctica de la arqueología hidráulica. Archeologie Medievale 20:121150.Google Scholar
Lobb, DA. 2009. Soil movement by tillage and other agricultural activities. In: Jørgensen SE, editor. Applications in Ecological Engineering . Amsterdam: Elsevier Academic Press. p 247255.Google Scholar
Maher, BA, Mengyu, H, Roberts, HM, Wintle, AG. 2003. Holocene loess accumulation and soil development at the western edge of the Chinese Loess Plateau: implications for magnetic proxies of palaeorainfall. Quaternary Science Reviews 22(5–7):445451.CrossRefGoogle Scholar
Martin, C, Johnson, WC. 1995. Variation in radiocarbon ages of soil organic matter fractions from late Quaternary buried soils. Quaternary Research 43(2):232237.CrossRefGoogle Scholar
Matthews, J, Dresser, PQ. 1983. Intensive 14C dating of a buried palaeosol horizon. Geologiska Föreningen i Stockholm Förhandlingar 105(1):5963.CrossRefGoogle Scholar
Matthews, JA. 1980. Some problems and implications of 14C dates from a Podzol buried beneath an end moraine at Haugabreen, Southern Norway. Geografiska Annaler. Series A, Physical Geography 62(3–4):185.CrossRefGoogle Scholar
Matthews, JA. 1985. Radiocarbon dating of surface and buried soils: principles, problems and prospects. In: Richards KS, Arnett RR, Ellis S, editors. Geomorphology and Soils. London: Allen and Unwin. p 269288.Google Scholar
McDonald, JH. 2014. Handbook of Biological Statistics. Baltimore: Sparky House Publishing.Google Scholar
Nakagawa, S, Cuthill, I. 2007. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biological Reviews 82:591605.CrossRefGoogle ScholarPubMed
Niles, SA. 1987. Style and Status in an Inca Community. Iowa City: University of Iowa Press.Google Scholar
Pessenda, LCR, Gouveia, SEM, Aravena, R. 2001. Radiocarbon dating of total soil organic matter and humin fraction and its comparison with 14C ages of fossil charcoal. Radiocarbon 43(2B):595601.CrossRefGoogle Scholar
Puy, A. 2012. Criterios de construcción de las Huertas Andalusíes. El caso de Ricote (Murcia, España) [PhD dissertation]. Bellaterra: Universitat Autònoma de Barcelona.Google Scholar
Puy, A. 2014. Land selection for irrigation in al-Andalus (Spain, 8th century AD). Journal of Field Archaeology 39(1):84100.CrossRefGoogle Scholar
Puy, A, Balbo, AL. 2013. The genesis of irrigated terraces in al-Andalus. A geoarchaeological perspective on intensive agriculture in semi-arid environments (Ricote, Murcia, Spain). Journal of Arid Environments 89:4556.CrossRefGoogle Scholar
Puy, A, Balbo, AL, Virgili, A, Kirchner, H. 2014. The evolution of Mediterranean wetlands in the first millennium AD: the case of Les Arenes floodplain (Tortosa, NE Spain). Geoderma 232–234:219235.CrossRefGoogle Scholar
Quirós Castillo, JA, Nicosia, C, Polo-Díaz, A, Ruiz del Árbol, M. 2013. Agrarian archaeology in northern Iberia: geoarchaeology and early medieval land use. Quaternary International 346:5668.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Caitlin, R, Hai, EB, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, T, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Marian Scott, E, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Retamero, F. 1998. Un conjunto de reglas sabias y ordenadas. La disciplina agraria del sultán. In: Laliena C, Utrilla J, editors. De Toledo a Huesca. Sociedades Medievales en Transición a Finales del Siglo XI (1080–1100). Zaragoza: Institución Fernando el Católico. p 6166.Google Scholar
Ron, ZYD. 1966. Agricultural terraces in the Judean Mountains. Israel Exploration Journal 16(1):3349.Google Scholar
Sadiki, A, Faleh, A, Navas, A, Bouhlassa, S. 2007. Using magnetic susceptibility to qualitatively assess soil erosion on cultivated slopes of the Eastern Rif, Morocco. Geophysical Research Abstracts 9:01312.Google Scholar
Sadiki, A, Faleh, A, Navas, A, Bouhlassa, S. 2009. Using magnetic susceptibility to assess soil degradation in the Eastern Rif, Morocco. Earth Surface Processes and Landforms 34(15):20572069.CrossRefGoogle Scholar
Sitjes, E. 2006. Inventario y tipología de sistemas hidráulicos en al-Andalus. Arqueología Espacial 26:263291.Google Scholar
Smith, ME, Price, TJ. 1994. Aztec-period agricultural terraces in Morelos, Mexico: evidence for household-level agricultural intensification. Journal of Field Archaeology 21(2):169179.Google Scholar
Spencer, JE, Hale, GA. 1961. The origin, nature and distribution of agricultural terracing. Pacific Viewpoint 2:140.Google Scholar
Tite, MS, Mullins, C. 1971. Enhancement of the magnetic susceptibility of soils on archaeological sites. Archaeometry 13(2):209221.CrossRefGoogle Scholar
Tonneijck, FH, van der Plicht, J, Jansen, B, Verstraten, JM, Hooghiemstra, H. 2006. Radiocarbon dating of soil organic matter fractions in Andosols in northern Ecuador. Radiocarbon 48(3):337353.CrossRefGoogle Scholar
Torró, J. 2007. Terrasses irrigades a les muntanyes valencianes: les transformacions de la colonització cristiana. In: Bolós J, editor. Estudiar i Gestionar el Paisatge Històric Medieval. IV. Territori i Societat a l’Edat Mitjana. Lleida: Universitat de Lleida. p 81145.Google Scholar
Treacy, JM, Denevan, WM. 1994. The creation of cultivable land through terracing. In: Miller NF, Gleason KL, editors. The Archaeology of Garden and Field. Philadelphia: University of Pennsylvania Press. p 91111.Google Scholar
Virina, E, Faustov, S, Heller, F. 2000. Magnetism of loess-palaeosol formations in relation to soil-forming and sedimentary processes. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 25(5):475478.CrossRefGoogle Scholar
Wang, Y, Amundson, R, Trumbore, S. 1996. Radiocarbon dating of soil organic matter. Quaternary Research 45(3):282288.CrossRefGoogle Scholar
Watson, AM. 1983. Agricultural Innovation in the Early Islamic World. Cambridge: Cambridge University Press.Google Scholar
Williams, R. 2015. Multicollinearity [WWW document]. Indiana: University of Notre Dame. URL: https://www3.nd.edu/~rwilliam/stats2/l11.pdf.Google Scholar
12
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Radiocarbon Dating of Agrarian Terraces by Means of Buried Soils
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Radiocarbon Dating of Agrarian Terraces by Means of Buried Soils
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Radiocarbon Dating of Agrarian Terraces by Means of Buried Soils
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *