Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-30T22:13:12.326Z Has data issue: false hasContentIssue false

RADIOCARBON AND TRITIUM MEASUREMENTS AT THE GXNU-AMS FACILITY

Published online by Cambridge University Press:  23 May 2023

Hongtao Shen*
Affiliation:
College of Physics and Technology, Guangxi Normal University, Guilin Guangxi 541004, China Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology, Guilin Guangxi 541004, China
Dingxiong Chen
Affiliation:
College of Physics and Technology, Guangxi Normal University, Guilin Guangxi 541004, China
Junsen Tang
Affiliation:
College of Physics and Technology, Guangxi Normal University, Guilin Guangxi 541004, China Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology, Guilin Guangxi 541004, China
Guofeng Zhang
Affiliation:
College of Physics and Technology, Guangxi Normal University, Guilin Guangxi 541004, China
Li Wang
Affiliation:
College of Physics and Technology, Guangxi Normal University, Guilin Guangxi 541004, China
Linjie Qi
Affiliation:
College of Physics and Technology, Guangxi Normal University, Guilin Guangxi 541004, China
Kaiyong Wu
Affiliation:
College of Physics and Technology, Guangxi Normal University, Guilin Guangxi 541004, China
Xinyi Han
Affiliation:
College of Physics and Technology, Guangxi Normal University, Guilin Guangxi 541004, China
He Ouyang
Affiliation:
College of Physics and Technology, Guangxi Normal University, Guilin Guangxi 541004, China
Ning Wang
Affiliation:
College of Physics and Technology, Guangxi Normal University, Guilin Guangxi 541004, China Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology, Guilin Guangxi 541004, China
Xiaojun Sun
Affiliation:
College of Physics and Technology, Guangxi Normal University, Guilin Guangxi 541004, China Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology, Guilin Guangxi 541004, China
Ming He
Affiliation:
China Institute of Atomic Energy, Beijing 102413, China
Kimikazu Sasa
Affiliation:
University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
Shan Jiang
Affiliation:
China Institute of Atomic Energy, Beijing 102413, China
*
*Corresponding author. Email: shenht@gxnu.edu.cn

Abstract

A single-stage accelerator mass spectrometer (GXNU-AMS) developed for radiocarbon and tritium measurements was installed and commissioned at Guangxi Normal University in 2017. After several years of operational and methodological upgrades, its performance has been continuously improved and applied in multidisciplinary fields. Currently, the measurement sensitivity for radiocarbon and tritium is 14C/12C ∼ (3.14 ± 0.05) ×10–15 and 3H/1H ∼ (1.23 ± 0.17)×10–16, respectively, and the measurement accuracy is ∼0.6%, which can meet the measurement requirements in the nuclear, earth, environmental and life science fields. This study presents the performance characteristics of GXNU-AMS and several interesting application studies.

Type
Conference Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 24th Radiocarbon and 10th Radiocarbon & Archaeology International Conferences, Zurich, Switzerland, 11–16 Sept. 2022

References

REFERENCES

Chen, J, Shen, H, Sasa, K, Lan, H, Matsunaka, T, Matsumura, M, Takahashi, T, Hosoya, S, He, M, He, Y, et al. 2019. Radiocarbon dating of Chinese ancient tea trees. Radiocarbon 61(6):17411748.CrossRefGoogle Scholar
Christl, M, Vockenhuber, C, Kubik, PW, et al. 2013. The ETH Zurich AMS facilities: performance parameters and reference material. Nuclear Instruments and Methods in Physics Research B 2013(294):2938.CrossRefGoogle Scholar
Elmore, D, Phillips, F. 1987. Accelerator mass spectrometry for measurement of long-lived radioisotope. Science 236:543550.CrossRefGoogle Scholar
Muller, RA. 1977. Radioisotope dating with a cyclotron. Science 196:489494.CrossRefGoogle ScholarPubMed
Qi, M, Li, Z, Tang, et al. 2021. Development and properties of AMS-14C sample preparation system. Journal of Isotopes 34(3):273. doi: 10.7538/tws.2021.34.03.0273. In Chinese.Google Scholar
Schroeder, JB, Hauser, TM, Klody, GM, et al. 2007. Initial results with low energy single stage AMS. Radiocarbon 46(1):14.CrossRefGoogle Scholar
Scognamiglio, G, Klein, M, et al. 2021. Low-energy 14C and multi-element HVE AMS systems. Nuclear Instruments and Methods in Physics Research B 492:2933.CrossRefGoogle Scholar
Shen, H, Jiang, S, He, M, et al. 2012. Measurement of fission product nuclide 126Sn with accelerator mass spectrometry based on SnF2 target, Atomic Energy Science and Technology 46(2):155159.Google Scholar
Shen, H, Jiang, S, He, M, et al. 2013. AMS measurements of fission products at CIAE. Nuclear Instruments and Methods in Physics Research B 294:136142.CrossRefGoogle Scholar
Shen, H, Pang, F, Jiang, S, He, M, Dong, K, Dou, L, et al. 2015. Study on 41Ca-AMS for diagnosis and assessment of cancer bone metastasis in rats. Nuclear Instruments and Methods in Physics Research B 361:643648 CrossRefGoogle Scholar
Shen, H, Ruan, X, Jiang, S, et al. 2009. Study on calcium net absorptivity by 41Ca labeling calcium pool of rats. Bone 44:60.CrossRefGoogle Scholar
Shen, H, Sasa, K, Meng, Q, Matsumura, M, Matsunak, T, et al. 2019. Exposure age dating of Chinese tiankengs by 36Cl-AMS. Nuclear Instruments and Methods in Physics Research B 459: 2935.CrossRefGoogle Scholar
Shen, H, Sasa, K, Meng, Q, et al. 2019. Cl-36 preparation method for Chinese Karst samples (Tiankeng). Nuclear Instruments and Methods in Physics Research B 458:126129.CrossRefGoogle Scholar
Shen, H, Shi, S, Tang, J, et al. 2022. 14C-AMS technology and its applications to an oil field tracer experiment. Radiocarbon 64(5):11591169.CrossRefGoogle Scholar
Shen, H, Tang, J, Wang, L, Qi, M, et al. 2022. New sample preparation line for radiocarbon measurements at the GXNU laboratory. Radiocarbon 64:15011511.CrossRefGoogle Scholar
Shen, H, Zhang, G, Tang, J, et al. 2022. A single-stage accelerator mass spectrometer and its applications at Guangxi Normal University. Nuclear Instruments and Methods in Physics Research B 532:6872.CrossRefGoogle Scholar
Synal, HA, Stocker, M, Suter, M. 2007. MICADAS: a new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research B 259(1):713.CrossRefGoogle Scholar
Synal, HA, Wacker, L. 2010. AMS measurement technique after 30 years: Possibilities and limitations of low energy systems. Nuclear Instruments and Methods in Physics Research B 268 (7–8):701707.CrossRefGoogle Scholar
Synal, HA. 2013. Developments in accelerator mass spectrometry. International Journal of Mass Spectrometry 349–350:192202.CrossRefGoogle Scholar
Skog, G. 2007. The single stage AMS machine at Lund University: status report. Nuclear Instruments and Methods in Physics Research B 259:16.CrossRefGoogle Scholar
Wei, S. 2021. Study on interwell tracer monitoring interpretation model in oil field [master’s dissertation]. Guangxi Normal University. In Chinese.Google Scholar
Zhao, Z, Qin, Y, Li, J, et al. 2020. Experimental conditions of 14C accelerator mass spectrometer. Journal of Chinese Mass Spectrometry Society 41(5):462. In Chinese.Google Scholar
Supplementary material: File

Shen et al. supplementary material

Shen et al. supplementary material

Download Shen et al. supplementary material(File)
File 434.3 KB