Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-zmlw7 Total loading time: 0.431 Render date: 2021-06-13T17:01:46.396Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Article contents

Origin and Alteration of Organic Matter in Hydrate-Bearing Sediments of the Rio Grande Cone, Brazil: Evidence from Biological, Physical, and Chemical Factors

Published online by Cambridge University Press:  02 September 2019

Luiz F Rodrigues
Affiliation:
Instituto de Física, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoatá, 24210-340, Niterói, RJ, Brazil Instituto do Petróleo e dos Recursos Naturais (IPR), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681–96J, 90619-900, Porto Alegre, Brazil
Kita D Macario
Affiliation:
Instituto de Física, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoatá, 24210-340, Niterói, RJ, Brazil
Roberto M Anjos
Affiliation:
Instituto de Física, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoatá, 24210-340, Niterói, RJ, Brazil
João M M Ketzer
Affiliation:
Instituto do Petróleo e dos Recursos Naturais (IPR), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681–96J, 90619-900, Porto Alegre, Brazil Department of Biology and Environmental Science, Linnaeus University, 391 81, Kalmar, Sweden
Anderson J Maraschin
Affiliation:
Instituto do Petróleo e dos Recursos Naturais (IPR), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681–96J, 90619-900, Porto Alegre, Brazil
Adolpho H Augustin
Affiliation:
Instituto do Petróleo e dos Recursos Naturais (IPR), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681–96J, 90619-900, Porto Alegre, Brazil
Vinicius N Moreira
Affiliation:
Instituto de Física, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoatá, 24210-340, Niterói, RJ, Brazil
Victor H J M dos Santos
Affiliation:
Instituto do Petróleo e dos Recursos Naturais (IPR), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681–96J, 90619-900, Porto Alegre, Brazil
Marcelo C Muniz
Affiliation:
Instituto de Física, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoatá, 24210-340, Niterói, RJ, Brazil
Renan P Cardoso
Affiliation:
Instituto de Física, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoatá, 24210-340, Niterói, RJ, Brazil
Adriano R Viana
Affiliation:
Petrobras, EXP/GEOF/MNS, Av. República do Chile, 330, Centro, 20031-170, Rio de Janeiro, Brazil
Dennis J Miller
Affiliation:
Petrobras, Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello – CENPES, Av. Horácio de Macedo, 950, Ilha do Fundão, 21941-915, Rio de Janeiro, Brazil
Corresponding

Abstract

The Rio Grande Cone is a major fanlike depositional feature in the continental slope of the Pelotas Basin, Southern Brazil. Two representative sediment cores collected in the Cone area were retrieved using a piston core device. In this work, the organic matter (OM) in the sediments was characterized for a continental vs. marine origin using chemical proxies to help constrain the origin of gas in hydrates. The main contribution of OM was from marine organic carbon based on the stable carbon isotope (δ13C-org) and total organic carbon/total nitrogen ratio (TOC:TN) analyses. In addition, the 14C data showed important information about the origin of the OM and we suggest some factors that could modify the original organic matter and therefore mask the “real” 14C ages: (1) biological activity that could modify the carbon isotopic composition of bulk terrestrial organic matter values, (2) the existence of younger sediments from mass wasting deposits unconformably overlying older sediments, and (3) the deep-sediment-sourced methane contribution due to the input of “old” (>50 ka) organic compounds from migrating fluids.

Type
Research Article
Information
Radiocarbon , Volume 62 , Issue 1 , February 2020 , pp. 197 - 206
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below.

References

Berner, RA. 1981. A new geochemical classification of sedimentary environments. Journal of Sedimentary Research 51(2):359365.Google Scholar
Blair, NE, Aller, RC. 2012. The fate of terrestrial organic carbon in the marine environment. Annual Review of Marine Science 4(1):401423. doi: 10.1146/annurev-marine-120709-142717.CrossRefGoogle ScholarPubMed
Burdige, DJ. 2005. Burial of terrestrial organic matter in marine sediments: A re-assessment. Global Biogeochemical Cycles 19(4):17. doi: 10.1029/2004GB002368.CrossRefGoogle Scholar
Coffin, RB, Hamdan, LJ, Smith, JP, Rose, PS, Plummer, RE, Yoza, B, Pecher, I, Montgomery, MT. 2014. Contribution of vertical methane flux to shallow sediment carbon pools across Porangahau Ridge, New Zealand. Energies 7(8):53325356. doi: 10.3390/en7085332.CrossRefGoogle Scholar
Coffin, R, Hamdan, L, Plummer, R, Smith, J, Gardner, J, Hagen, R, Wood, W. 2008. Analysis of methane and sulfate flux in methane-charged sediments from the Mississippi Canyon, Gulf of Mexico. Marine and Petroleum Geology 25(9):977987. doi: 10.1016/j.marpetgeo.2008.01.014.CrossRefGoogle Scholar
Dickens, AF, Gélinas, Y, Masiello, C, Wakeham, S, Hedges, JI. 2004. Reburial of fossil organic carbon in marine sediments. Nature 427(6972):336339. doi: 10.1038/nature02299.CrossRefGoogle ScholarPubMed
Eglinton, TI, Aluwihare, I, Bauer, JE, Druffel, ERM, McNichol, AP. 1996. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating. Analytical Chemistry 68(5):904912. doi: 10.1021/ac9508513.CrossRefGoogle ScholarPubMed
Ericson, DB, Goesta, W. 1968. Pleistocene climates and chronology in deep-sea sediments. Science 162(3859):1227–&.CrossRefGoogle Scholar
Freire, AFM, Monteiro, MC. 2013. A novel approach for inferring the proportion of terrestrial organic matter input to marine sediments on the basis of TOC:TN and a novel approach for inferring the proportion of terrestrial organic matter input to marine sediments on the basis of TOC:TN. Open Journal of Marine Science 3(2):7492. doi: 10.4236/ojms.2013.32009.CrossRefGoogle Scholar
Freudenthal, T, Wagner, T, Wenzhöfer, F, Zabel, M, Wefer, G. 2001. Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: Evidence from stable nitrogen and carbon isotopes. Geochimica et Cosmochimica Acta 65(11):17951808. doi: 10.1016/S0016-7037(01)00554-3.CrossRefGoogle Scholar
Hedges, JI. 1992. Global biogeochemical cycles: Progress and problems. Marine Chemistry 39 (1–3):6793. doi: 10.1016/0304-4203(92)90096-S.CrossRefGoogle Scholar
Hedges, JI, Parker, P L. 1976. Land-derived organic matter in surface sediments from the Gulf of Mexico. Geochimica et Cosmochimica Acta 40(9):10191029.CrossRefGoogle Scholar
Hernández-Molina, FJ, Soto, M, Piola, AR, Tomasini, J, Preu, B, Thompson, P, Badalini, G, Creaser, A,., Violante, RA, Morales, E, Paterlini, M, Santa Ana, HD. 2016. A contourite depositional system along the Uruguayan continental margin: Sedimentary, oceanographic and paleoceangraphic implications. Marine and Petroleum Geology 378:333349. doi: 10.1016/j.margeo.2015.10.008 CrossRefGoogle Scholar
Lamb, AL, Wilson, GP, Leng, MJ. 2006. A review of coastal palaeoclimate and relative sea-level reconstructions using d13C and C/N ratios in organic material. Earth-Science Reviews 75:2957.CrossRefGoogle Scholar
Martins, LR, Urien, CM, Martins, IR. 2005. Gênese dos sedimentos da plataforma continental Atlântica entre o Rio Grande do Sul (Brasil) e Tierra Del Fuego (Argentina). Gravel 3:85102.Google Scholar
Matsumoto, R, Ryu, BJ, Lee, SR, Lin, S, Wu, S, Sain, K, Pecher, I, Riedel, M. 2011. Occurrence and exploration of gas hydrate in the marginal seas and continental margin of the Asia and Oceania region. Marine and Petroleum Geology 28(10):17511767.CrossRefGoogle Scholar
Mayer, LM. 1994. Surface area control of organic carbon accumulation in continental shelf sediments. Geochimica et Cosmochimica Acta 58(4):12711284. doi: 10.1016/0016-7037(94)90381-90386.CrossRefGoogle Scholar
Meyers, PA. 1997. Organic geochemical proxies of paleoceanographic, plaeolimnologic and plaeoclimatic processes. Organic Geochemistry 27(5):213250.CrossRefGoogle Scholar
Milani, EJ, Brandão, JASL, Zalán, PV, Gamboa, LAP. 2000. Petróleo na margem continental Brasileira: Geologia, Exploração, resultados e perspectivas. Revista Brasileira de Geofísica 18(3):352396. doi: 10.1590/S0102-261X2000000300012.CrossRefGoogle Scholar
Miller, DJ, Ketzer, JM, Viana, AR, Kowsmann, RO, Freire, AFM, Oreiro, SG, Augustin, AH. 2015. Natural gas hydrates in the Rio Grande Cone (Brazil): A new province in the western South Atlantic. Marine and Petroleum Geology 67:187196. doi: 10.1016/j.marpetgeo.2015.05.012.CrossRefGoogle Scholar
Petrobras, Petróleo Brasileiro, S A / Centro de Pesquisas Leopoldo Américo Miguez de Mello/Instituto do Petróleo e Recursos Naturais. 2011. Posicionamento Cronoestratigráfico das Amostras Dos Testemunhos PC-31 E PC-51 (Campanha MR11), Localizados No Cone de Rio Grande, Com Base Em Foraminíferos Planctônicos. Internal Report, 14.Google Scholar
Pohlman, JW, Bauer, JE, Canuel, EA, Grabowski, KS, Knies, DL, Mitchell, CS, Whiticar, MJ, Coffin, RB. 2009. Methane sources in gas hydrate-bearing cold seeps: Evidence from radiocarbon and stable isotopes. Marine Chemistry 115(1–2):102109. doi: 10.1016/j.marchem.2009.07.001.CrossRefGoogle Scholar
Pohlman, JW, Bauer, JE, Waite, WF, Osburn, CL, Chapman, NR. 2011. Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans. Nature Geoscience 4(1):3741. doi: 10.1038/ngeo1016.CrossRefGoogle Scholar
Raymond, PA, Bauer, JE. 2001. Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: A review and synthesis. Organic Geochemistry 32(4):469485. doi: 10.1016/S0146-6380(00)00190-X.CrossRefGoogle Scholar
Rodrigues, LF, Ketzer, JM, Lourega, RV, Augustin, AH, Sbrissa, G, Miller, D, Heemann, R, Viana, A, Freire, AFM, Morad, S. 2017. The influence of methane fluxes on the sulfate/methane interface in sediments from the Rio Grande cone gas hydrate province, southern Brazil. Brazilian Journal of Geology 47(3):369381. doi: 10.1590/2317-4889201720170027.CrossRefGoogle Scholar
Sassen, R, MacDonald, IR, Guinasso, NL, Joye, S, Requejo, AG, Sweet, ST, Alcalá-Herrera, J, DeFreitas, DA, Schink, DR. 1998. Bacterial methane oxidation in sea-floor gas hydrate: Significance to life in extreme environments. Geology 26(9):851854.2.3.CO;2>CrossRefGoogle Scholar
Silveira, DPT, Machado, MAP. 2004. Bacias Sedimentares Brasileiras: Bacia de Pelotas. Phoenix, Série Bacias Sedimentares 63:16.Google Scholar
Viana, AR. 2001. Seismic expression of shallow- to deep-water contourites along the south-eastern Brazilian margin. Marine Geophysical Researches 22(5/6):509521. doi: 10.1023/A:1016307918182.CrossRefGoogle Scholar
Vicalvi, MA. 1999. Zoneamento bioestratigráfico e paleoclimático do quaternário superior do Talude da Bacia de Campos e Platô de São Paulo adjacente, com base em foraminíferos planctônicos. Anuário do Instituto de Geociências 22:117–19.Google Scholar
Wilson, GP, Lamb, AL, Leng, MJ, Gonzalez, S, Huddart, D. 2005. Variability of organic δ13C and C/N in the Mersey Estuary, UK and its implications for sea-level reconstruction studies. Estuarine, Coastal and Shelf Science 64(4):685698.CrossRefGoogle Scholar
Supplementary material: File

Rodrigues et al. supplementary material

Rodrigues et al. supplementary material

Download Rodrigues et al. supplementary material(File)
File 298 KB
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Origin and Alteration of Organic Matter in Hydrate-Bearing Sediments of the Rio Grande Cone, Brazil: Evidence from Biological, Physical, and Chemical Factors
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Origin and Alteration of Organic Matter in Hydrate-Bearing Sediments of the Rio Grande Cone, Brazil: Evidence from Biological, Physical, and Chemical Factors
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Origin and Alteration of Organic Matter in Hydrate-Bearing Sediments of the Rio Grande Cone, Brazil: Evidence from Biological, Physical, and Chemical Factors
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *