Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-569ts Total loading time: 1.114 Render date: 2022-10-05T23:23:04.901Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": true, "useSa": true } hasContentIssue true

NEW CHRONOLOGY FOR MEGALITHIC BURIALS IN VIDARBHA (CENTRAL INDIA): INSIGHTS INTO CONTEMPORARY HYDRO-CLIMATE AND FOOD HABITS

Published online by Cambridge University Press:  21 July 2022

Nikhil Patel
Affiliation:
Birbal Sahni Institute of Palaeosciences, Lucknow-226007, India Dept. of Geology, Banaras Hindu University, Varanasi-221005, India
Preeti Trivedi
Affiliation:
Dept of AIHC & Archaeology RTM Nagpur UniversityNagpur440033, India
Rajesh Agnihotri*
Affiliation:
Birbal Sahni Institute of Palaeosciences, Lucknow-226007, India
Niraj Rai
Affiliation:
Birbal Sahni Institute of Palaeosciences, Lucknow-226007, India
Vijay Sathe
Affiliation:
Dept of AIHC & Archaeology, Deccan College Postgraduate and Research Institute, Deemed University, Pune411006, India
Niteshkumar Khonde
Affiliation:
Birbal Sahni Institute of Palaeosciences, Lucknow-226007, India
Ravi Bhushan
Affiliation:
Physical Research LaboratoryAhmadabad380 009, India
Partha Sarathi Jena
Affiliation:
Physical Research LaboratoryAhmadabad380 009, India
A Shivam
Affiliation:
Physical Research LaboratoryAhmadabad380 009, India
Alok Kumar
Affiliation:
Dept. of Geology, Banaras Hindu University, Varanasi-221005, India
*
*Corresponding author. Email: rajagni9@gmail.com

Abstract

Megalithic cultures of central India provide important links between the southern Neolithic-Chalcolithic cultures and the early Historical period (∼500 BC to ∼AD 700) and reveal knowledge of ancient traditions of early inhabitants. Scientific dating of these Megalithic burial sites is a challenging task due to scarcity of dateable material and alterations. Here, we present multiple accelerator mass spectrometry radiocarbon (AMS 14C) dates from equine tooth-enamel and organic food remains recovered from pots from Megalithic burials of the Vidarbha region. Using δ13CTOC and δ15N values of organic food remains recovered from pots, we deduced past-diet (palaeo-vegetation) that indicates C4 type of vegetation and thus arid climate during life-spans of these burials. We also analyzed stable δ13C and δ18O isotopes of equine tooth-enamel to investigate hydro-climatic conditions of Maharashtra (Vidarbha region). A total of 10 AMS 14C dates of tooth enamel provide a time range of AD 250–874 for two Megalithic burials. Two AMS 14C dates of organic food remains recovered from pots corroborated aforementioned time-range. The average δ13C and δ18O of equine tooth-enamel samples were −5.3 ± 2.1‰ and −2.9 ± 0.8‰, respectively, both significantly enriched compared to their modern counterparts (−13.7‰ ± 0.7 and −4.3‰ ± 1.1), indicating intense arid conditions in the past.

Type
Research Article
Information
Radiocarbon , Volume 64 , Issue 5 , October 2022 , pp. 1075 - 1091
Copyright
© The Author(s), 2022. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These two authors are equal first authors of the paper.

References

REFERENCES

Agnihotri, R, Dutta, K, Bhushan, R, Somayajulu, BLK. 2002. Evidence for solar forcing on the Indian monsoon during the last millennium. Earth and Planetary Science Letters 198:521527. doi: 10.1016/S0012-821X(02)00530-7.CrossRefGoogle Scholar
Agnihotri, R, Gahlaud, SKS, Patel, N, Sharma, R, Kumar, P, Chopra, S. 2020. Radiocarbon measurements using new automated graphite preparation laboratory coupled with stable isotope mass-spectrometry at Birbal Sahni Institute of Palaeosciences, Lucknow (India). Journal of Environmental Radioactivity 213:106156. doi: 10.1016/j.jenvrad.2019.106156.CrossRefGoogle Scholar
Amundson, R, Austin, A, Schuur, E, Yoo, K, Matzek, V, Kendall, C, Uebersax, A, Brenner, DL, Baisden, T. 2003. Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochemical Cycles 17–31. doi: 10.1029/2002GB001903.CrossRefGoogle Scholar
Araus, JL, Amaro, T, Zuhair, Y, Nachit, MM. 1997. Effect of leaf structure and water status on carbon isotope discrimination in field-grown durum wheat. Plant, Cell & Environment 20(12):14841494.CrossRefGoogle Scholar
Ansari, AH, Pandey, SK, Sharma, M, Agrawal, S, Kumar, Y. 2018. Carbon and oxygen isotope stratigraphy of the Ediacaran Bilara Group, Marwar Supergroup, India: evidence for high amplitude carbon isotopic negative excursions. Precambrian Research 308:7591. doi: 10.1016/j.precamres.2018.02.002.CrossRefGoogle Scholar
Austin, AT, Vitousek, PM. 1998. Nutrient dynamics on a precipitation gradient in Hawai’i. Oecologia 113:519529.CrossRefGoogle ScholarPubMed
Ayliffe, LK, Chivas, AR, Leakey, MG. 1994.The retention of primary oxygen isotope compositions of fossil elephant skeletal phosphate. Geochimica et Cosmochimica Acta 58(23):52915298. doi: 10.1016/0016-7037(94)90312-3.CrossRefGoogle Scholar
Balasse, M. 2002. Reconstructing dietary and environmental history from enamel isotopic analysis: time resolution of intra-tooth sequential sampling. International Journal of Osteoarchaeology 12:155165.CrossRefGoogle Scholar
Barbara, B, Sue, H, Christopher, T. 1997. Leskernick: stone worlds; alternative narratives; nested landscapes. Proceedings of the Prehistoric Society 63:147178. doi: 10.1017/S0079497X00002413.Google Scholar
Bard, EG, Raisbeck, F, Yiou, JJ. 2000. Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus 52B:985992.CrossRefGoogle Scholar
Binodini Devi, P. 2017. Concept of Megalithism in the 21st century archaeology of India. Sociology and Anthropology 5.9.719731. doi: 10.13189/sa.2017.050904.CrossRefGoogle Scholar
Brandfield, BR. 1873. Rude megalithic monuments in North Arcort. Journal of the Asiatic Society of Bengal 49:810.Google Scholar
Brock, F, Geoghegan, V, Thomas, B, Jurkschat, K., Higham, T. 2013. Analysis of bone “collagen” extraction products for radiocarbon dating. Radiocarbon 55(2):445463. doi: 10.1017/S0033822200057581.CrossRefGoogle Scholar
Bronk Ramsey, C. 2015. Bayesian approaches to the building of archaeological chronologies. Boca Raton (FL): CRC Press. p. 272292.Google Scholar
Bronk Ramsey, C, Higham, T, Bowles, A, Hedges, R. 2004. Improvements to the pretreatment of bone at Oxford. Radiocarbon 46(1):155163.CrossRefGoogle Scholar
Bronk Ramsey, C, Scott, M, van der Plicht, H. 2013. Calibration for archaeological and environmental terrestrial samples in the time range 26–50 ka cal BP. Radiocarbon 55(4):20212027.CrossRefGoogle Scholar
Brubaker, R. 2000. Aspects of mortuary variability in the South Indian Iron Age. Bulletin of the Deccan College Research Institute 60:253302.Google Scholar
Buchholz, BA, Spalding, KL. 2010. Year of birth determination using radiocarbon dating of dental enamel. Surface and Interface Analysis 42(5):398401. doi: 10.1002/sia.3093.CrossRefGoogle ScholarPubMed
Bulletin: Indian Archeology. 1995–1996. A review. p. 57.Google Scholar
Calabrisotto, CS, Fedi, ME, Cafrio, L, Mando, PA. 2013. Collagen quality indicators for radiocarbon dating of bones: new data on bronze age Cyprus. Radiocarbon 55 (2–3), 472 480. https://doi.org/10.2458/azu_js_rc.55.16353.CrossRefGoogle Scholar
Cerling, T, Harris, J, Macfadden, B, Lea-key, M, Quade, J, Eisenmann, V, Eh-leringer, J. 1997. Global vegetation change through the Miocene/Pliocene boundary: Nature 389.CrossRefGoogle Scholar
Cerling, TE, Hart, JA, Hart, TB. 2004. Stable isotope ecology in the Ituri Forest. Oecologia 138:512.CrossRefGoogle ScholarPubMed
Cersoy, S, Zazzo, A, Rofes, J, Tresset, A, Zirah, S, Gauthier, C, Kaltnecker, E, Thil, F, Tisnérat-Laborde, N. 2017. Radiocarbon dating minute amounts of bone (3–60 mg) with ECHoMICADAS. Scientific Reports 7(1):7141. doi: 10.1038/s41598-017-07645-3.CrossRefGoogle ScholarPubMed
Cheng, AB, Dong, W, Li, H, Zhang, P, Zhao, Y, Zhao, X, Yong, YS. 2015. Variability of the stable carbon isotope ratio in modern and archaeological millets: evidence from northern China. Journal of Archaeological Science 53:316322. doi: 10.1016/j.jas.2014.11.001.Google Scholar
Choy, K, Yun, HY, Lee, J, Fuller, BT, Shin, KH. 2021. Direct isotopic evidence for human millet consumption in the Middle Mumun period: implication and importance of millets in early agriculture on the Korean Peninsula. Journal of Archaeological Science 129:105372.CrossRefGoogle Scholar
Das, S. 2018. Mystery of the similarities of Indian, European and British megaliths: a consideration of possible influences in Antiquity. The Chitrolekha Journal on Art and Design 2(3):1528, (E-ISSN2456-978X). doi: 10.21659/cjad.23.v2n302.CrossRefGoogle Scholar
Darsana, SB. 1998. Prothistoric Investigations in the Upper Palar Basin (Tamil Nadu) [PhD dissertation]. Pune: University of Poona.Google Scholar
Deo, SB. 1970. Excavation at Takalghat and Khapa, 1968-69. Nagpur: Nagpur University. p. 1314.Google Scholar
Deo, SB. 1973a. Mahurjhari excavations. Nagpur: Nagpur University.Google Scholar
Deo, SB. 1973b. Problem of South Indian megaliths. Dharwar: Kannada Research Institute, Karnataka University.Google Scholar
Deo, SB. 1973c. The dating of Megalithic in Maharashtra and some new evidence. In: Agarwal, DP, Gosh, A, editors. Radiocarbon and Indian archaeology. Bombay: Tata Institute of Fundamental Research. p. 131137.Google Scholar
Deo, SB. 1982. The Vidarbha megaliths—a review. Bulletin of the Deccan College Research Institute, JSTOR 41:2732.Google Scholar
Deo, SB. 1998. Iron in Peninsular India. In: Verma, TP, editor. Dating in Indian archaeology: problems and perspectives. Mysore: Bharatiya Itihas Sankalan Samiti. p. 5761.Google Scholar
Deo, SB, Jamkhedkar, AP. 1982. Excavations at Naikund 1978–80. Bombay: Department of Archaeology and Museum, Government of Maharashtra. 7 p.Google Scholar
Dunbar, E, Cook, GT, Naysmith, P, Tripney, BG, Xu, S. 2016. AMS 14C dating at the Scottish Universities Environmental Research Centre (SUERC) Radiocarbon Dating Laboratory. Radiocarbon 58(1):923. doi: 10.1017/RDC.2015.2.CrossRefGoogle Scholar
Dury, JPR, Lidén, K, Harris, AJT, Eriksson, G. 2021. Dental wiggle matching: radiocarbon modelling of sub-sampled archaeological human dentine. Quaternary International 595: 118127. ISSN 1040-6182. doi: 10.1016/j.quaint.2021.03.030.CrossRefGoogle Scholar
Fergusson, J, Murray, J. 1872. Rude stone monuments in all countries, their ages and uses. London.Google Scholar
Fiorentino, G, Ferrio, JP, Bogaard, A, Araus, JL, Riehl, S. 2015. Stable isotopes in archaeobotanical research. Vegetation History and Archaeobotany 24(1):215227.CrossRefGoogle Scholar
Farquhar, GD, Ehleringer, JR, Hubick, KT. 1989. Carbon isotope discrimination and photosynthesis. Annual review of plant biology 40(1):503537.CrossRefGoogle Scholar
Felstead, NJ. 2012. Palaeoenvironmental reconstruction and geoarchaeology of the Cuatro Cienegas Basin, NE Mexico, from the late Pleistocene to the present. Liverpool: John Moores University.Google Scholar
Fuller, D, Boivin, N, Korisettar, R. 2015. Dating the Neolithic of South India: new radiometric evidence for key economic, social and ritual transformations. Antiquity 81:755778. doi: 10.1017/S0003598X00095715.CrossRefGoogle Scholar
Fuller, DQ. 2014. South Asia: archaeology. In: Bellwood, P, editor. The global prehistory of human migration. Wiley-Blackwell. p. 245.Google Scholar
Grün, R. 2006. Direct dating of human fossils. Yearbook of Physical Anthropology 49:248. doi: 10.1002/ajpa.20516.CrossRefGoogle Scholar
Heaton, T. 1987. The 15N/14N ratios of plants in South Africa and Namibia: relationship to climate and coastal/saline environments. Oecologia 74:236246. doi: 10.1007/BF00379365.CrossRefGoogle ScholarPubMed
Hedges, REM, Lee-Thorp, JA, Tuross, NC. 1995. Is tooth enamel carbonate a suitable material for radiocarbon dating? Radiocarbon. doi: 10.1017/S0033822200030757.CrossRefGoogle Scholar
Higham, C, Douka, K, Higham, T. 2015. A new chronology for the Bronze Age of northeastern Thailand and its implications for Southeast Asian prehistory. PLOS ONE 10(9): e0137542. doi: 10.1371/journal.pone.0137542.CrossRefGoogle ScholarPubMed
Hoppe, KA, Amundson, R, Vavra, M, McClaran, MP, Anderson, DL. 2004. Isotopic analysis of tooth enamel carbonate from modern North American feral horses: implications for paleoenvironmental reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 203:299311.CrossRefGoogle Scholar
Hoppe, KA. 2006. Correlation between the oxygen isotope ratio of North American bison teeth and local waters: implication for paleoclimatic reconstructions. Earth and Planetary Science Letters 244:408417. doi: 10.1016/j.epsl.2006.01.062.CrossRefGoogle Scholar
Kajale, MD. 1989. Archaeobotanical investigation on Megalithic Bhagimohari, and its significance for Ancient Indian agricultural system. Man and Environment 13:87100.Google Scholar
Kohn, MJ, Cerling, TE. 2002. Stable isotope compositions of biological apatite. In Phosphates. Geochemical, geobiological, and materials importance, eds. M.J. Kohn, J. Rakovan, and J.M. Hughes. Reviews in Mineralogy and Geochemistry 48:455–488.CrossRefGoogle Scholar
Knipper, C, Rihuete-Herrada, C, Voltas, J, Held, P, Lull, V, Micó, R, Risch, R, Alt, KW. 2020. Reconstructing Bronze Age diets and farming strategies at the early Bronze Age sites of La Bastida and Gatas (southeast Iberia) using stable isotope analysis. PLoS One 15(3):e0229398.CrossRefGoogle ScholarPubMed
Koch, P. 1998. Isotopic reconstruction of past continental environments. Annual Review of Earth and Planetary Science 26:573613.CrossRefGoogle Scholar
Koch, PL. 2007. Isotopic study of the biology of modern and fossil vertebrates. In: Michener, R, Lajtha, K, editors. Stable isotopes in ecology and environmental science. 2nd ed. Oxford: Blackwell. p. 99154.CrossRefGoogle Scholar
Kohn, MJ. 1996. Predicting animal δ18O: accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta 60:48114829.CrossRefGoogle Scholar
Kohn, MJ, Schoeninger, MJ, Barker, WB. 1999. Altered states: effects of diagenesis on fossil tooth chemistry. Geochimica et Cosmochimica Acta 63:27372747.CrossRefGoogle Scholar
Kohn, MJ, McKay, MP, Knight, JL. 2005. Dining in the Pleistocene—who’s on the menu? Geology 33:649652 CrossRefGoogle Scholar
Krishnaswami, VD. 1949. Megalithic types of South India. Ancient India 5:3545.Google Scholar
Leshnik, LS 1974. South Indian megalithic burials: the Pandukal complex. Wiesbaden.Google Scholar
Levin, NE, Cerling, TE, Passey, BH, Harris, JM, Ehleringer, JR. 2006. A stable isotope aridity index for terrestrial environments. Proceedings of the National Academy of Sciences 103:1120111205.CrossRefGoogle ScholarPubMed
Longinelli, A. 1984. Oxygen isotopes in mammal bone phosphate: a new tool for palaeoclimatological and palaeoenvironmental research? Geochimica et Cosmochimica Acta 48:385390.CrossRefGoogle Scholar
López-Costas, O, Alexander, M. 2019. Paleodiet in the Iberian Peninsula: exploring the connections between diet, culture, disease and environment using isotopic and osteoarchaeological evidence. Archaeol Anthropol Sci 11: 36533664. doi: 10.1007/s12520-019-00886-5.CrossRefGoogle Scholar
Lukacs, JR. 1981. Dental pathology and nutritional patterns of South Asian megalith-builders: the evidence from Iron Age Mahurjhari. Proceedings of American Philosophical Society 125(3):220237.Google ScholarPubMed
Magli, G. 2016. Sirius and the project of the megalithic enclosures at Gobekli Tepe. Nexus Network Journal 18:337346. doi: 10.1007/s00004-015-0277-1.CrossRefGoogle Scholar
Malou, B, Karl-Göran, S, Jan, S. 2020. Old bones or early graves? Megalithic burial sequences in southern Sweden based on 14C datings. Archaeological and Anthropological Sciences 12:89. doi: 10.1007/s12520-020-01039-9.Google Scholar
Managave, SR, Sheshshayee, MS, Borgaonkar, HP, Ramesh, R. 2010. Intra-annual oxygen isotope variations in central Indian teak cellulose: possibility of improved resolution for past monsoon reconstruction. Current Science 98:930937.Google Scholar
Mane, GK. 2013. Socio-economic condition during the Megalithic period in Vidarbha. Proceedings of the Indian History Congress 74: 826833. http://www.jstor.org/stable/44158884.Google Scholar
Marak Q, Jangkhomang. 2012. Matriliny and the megalithic practices of the Jaintias of Meghalaya. Indian Anthropologist 42(2):6782. http://www.jstor.org/stable/41922307.Google Scholar
Mohanty, R, Selvakumar, V. 2002. The archaeology of the megaliths in India: 1947–1997. Indian Archaeology in Retrospect 1:313351.Google Scholar
Morandi, LF, Frémondeau, D, Müldner, G. 2021. Sequential analyses of bovid tooth enamel and dentine collagen (δ18O, δ13C, δ15N): new insights into animal husbandry between the Late Neolithic and the Early Bronze Age at Tana del Barletta (Ligurian Prealps). Archaeol Anthropol Sci 13:147. doi: 10.1007/s12520-021-01418-w.CrossRefGoogle Scholar
O’Leary, MH. 1988. Carbon isotopes in photosynthesis. Bioscience 38(5):328336.CrossRefGoogle Scholar
Peukert, S, Bol, R, Roberts, W, Macleod, C, Murray, P, Dixon, ER, Brazier, RE. 2012. Understanding spatial variability of soil properties: a key step in establishing field- to farm-scale agro-ecosystem experiments. Rapid Communications in Mass Spectrometry (RCM) 26:2413–21. doi: 10.1002/rcm.6336.CrossRefGoogle Scholar
Quade, J, Cerling, TE, Andrews, P, Alpagut, B. 1995. Paleodietary reconstruction of Miocene faunas from Pasalar, Turkey using stable carbon and oxygen isotopes of fossil tooth enamel. Journal of Human Evolution 28:373384.CrossRefGoogle Scholar
Quade, J, Cerling, TE, Barry, JC, Morgan, ME, Pilbeam, DR, Chivas, AR, Lee-Thorp, JA, Van der Merwe, NJ. 1992. A 16-Ma record of paleodiet using carbon and oxygen isotopes in fossil teeth from Pakistan. Chemical Geology 94:183192.CrossRefGoogle Scholar
Rajesh, KP. 2017. Megaliths of North Kerala: formation of technologically advanced agro-pastoral Iron Age and early historic society. Heritage: Journal of Multidisciplinary Studies in Archaeology 5:486506.Google Scholar
Rao, KP. 1991. A unique Iron Age grave complex from South India. East and West, 41(1/4):363369. http://www.jstor.org/stable/29756985.Google Scholar
Rao, KP. 2000. Megalithic anthropomorphic statues: meaning and significance. Indo-Pacific Prehistory Association Bulletin 19 (Melaka Pepers). Volume 3.Google Scholar
Reimer, P, Austin, W, Bard, E, Bayliss, A, Blackwell, P, Bronk Ramsey, C, Butzin, M, Cheng, H, Edwards, R, Friedrich, M, Grootes, P, Guilderson, T, Hajdas, I, Heaton, T, Hogg, A, Hughen, K, Kromer, B, Manning, S, Muscheler, R, Palmer, J, Pearson, C, van der Plicht, J, Reimer, R, Richards, D, Scott, E, Southon, J, Turney, C, Wacker, L, Adolphi, F, Büntgen, U, Capano, M, Fahrni, S, Fogtmann-Schulz, A, Friedrich, R, Köhler, P, Kudsk, S, Miyake, F, Olsen, J, Reinig, F, Sakamoto, M, Sookdeo, A, Talamo, S. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4):725757. doi: 10.1017/RDC.2020.41.CrossRefGoogle Scholar
Renfrew, C. 1973. Monuments, mobilization and social organization in Neolithic Wessex. The explanation of culture change—models in prehistory. London: Duckworth. p. 539558.Google Scholar
Renfrew, C. 1976. Megaliths, territories and populations. In: de Laet, SD, editor. Acculturation and continuity in Atlantic Europe. Bruges: de Tempel. p. 198220.Google Scholar
Renfrew, C. 1983. The social archaeology of megalithic monuments. Scientific American 249(5):152163. http://www.jstor.org/stable/24969036.CrossRefGoogle Scholar
Renfrew, C. 1984 Megaliths, territories and populations, in approaches to social archaeology. Edinburgh: Edinburgh University Press. p. 165–99.Google Scholar
Rivett-Camac, JH. 1879. Prehistoric remains in central India. Proceedings of the Asiatic Society of Bengal 47:116.Google Scholar
Roy, O. 2018. Socio-cultural traits of Vidarbhan megaliths based on archaeo-metallurgical and ethnographic studies [PhD dissertation]. Maharaja Sayajirao University of Baroda, India.Google Scholar
Saliège, JF, Person, A, Paris, F. 1995. Preservation of 13C/12C original ratio and 14C dating of the mineral fraction of human bones from Saharan tombs, Niger. Journal of Archaeological Science 22(2):301312.CrossRefGoogle Scholar
Sánchez, QF, Malmström, H, Fraser, M, Girdland-Flink, L, Svensson, EM, Simões, LG, George, R, Hollfelder, N, Burenhult, G, Noble, G, Britton, K. 2019. Megalithic tombs in western and northern Neolithic Europe were linked to a kindred society. Proceedings of the National Academy of Sciences 116(19):94699474.CrossRefGoogle Scholar
Sandhu, S, Sathe, V, Chakarborty, KS, Chakraborty, S, Chauhan, PR. 2021. Carbon and oxygen isotope analysis of modern cattle (Bos indicus) molars from the central Narmada Valley, India. Ancient Asia 12:3. doi: 10.5334/aa.210.CrossRefGoogle Scholar
Schoeninger, MJ, DeNiro, MJ. 1982. Carbon isotope ratios of apatite from fossil bone cannot be used to reconstruct diets of animals. Nature 297:557578.CrossRefGoogle ScholarPubMed
Sengupta, S, Sarkar, A. 2006. Stable isotope evidence of dual (Arabian Sea and Bay of Bengal) vapor sources in monsoonal precipitation over north India. Earth and Planetary Science Letters 250:511521.CrossRefGoogle Scholar
Sicre, M, Jacob, J, Ezat, U, Rousse, S, Kissel, C, Yiou, P, Eiriksson, J, Knudsen, KL, Jansen, E, Turon, J. 2008. Decadal variability of sea surface temperatures off North Iceland over the last 2000 years. Earth and Planetary Science Letters 268:137e142.CrossRefGoogle Scholar
Singh, U. 2008. A history of Ancient and Early Medieval India: from the Stone Age to the 12th century. Pearson India Education Services Pvt. Ltd. CIN: U72200TN2005PTC057128, ISBN 9788131716779. p. 417–445.Google Scholar
Styring, AK, Ater, M, Hmimsa, Y, Fraser, R, Miller, H, Neef, R, Pearson, JP, Bogaard, A. 2016. Disentangling the effect of farming practice from aridity on crop stable isotope values: A present-day model from Morocco and its application to early farming sites in the eastern Mediterranean. The Anthropocene Review 3. doi: 10.1177/2053019616630762.CrossRefGoogle Scholar
Tieszen, LL. 1991. Natural variations in the carbon isotope values of plants: implications for archaeology, ecology, and paleoecology. Journal of Archaeological Science 18(3):227248.CrossRefGoogle Scholar
Thomas, PK. 1992a. Horse remains from Raipur, in Megalithic Raipur: 1985–90. In: Deglurkar GB, Lad G, editors. Pune: Deccan College Research Institute. p. 133–136.Google Scholar
Thomas, PK. 1992b. Faunal background of the Iron Age culture of Maharashtra. Man and Environment 17(2):7579.Google Scholar
Thorp, LJA, van der Merwe, NJ. 1987. Carbon isotope analysis of fossil bone apatite. South African Journal of Science 83:712715.Google Scholar
Thorp, LJA, Sponheimer, M. 2005. Opportunities and constraints for reconstructing palaeoenvironments from stable light isotope ratios in fossils. Geological Quarterly 49:195204.Google Scholar
van der Merwe, NJ, Medina, E. 1991. The canopy effect, carbon isotope ratios and foodwebs in Amazonia. Journal of Archaeological Science 18:249259.CrossRefGoogle Scholar
Ventresca, MA, Fernandes, R, Janzen, A, Nayak, A, Swift, J, Zech, J, Boivin, N, Roberts, P. 2018. Sampling and pretreatment of tooth enamel carbonate for stable carbon and oxygen isotope analysis. J. Vis. Exp. (138):e58002. doi: 10.3791/58002.CrossRefGoogle Scholar
von Rad, U, Schaaf, M, Michels, K, Schulz, H, Berger, W, Sirocko, F. 1999. A 5000-yr record of climate change in varved sediments from the oxygen minimum zone off Pakistan, northeastern Arabian Sea. Quaternary Research 51(1):3953. doi: 10.1006/qres.1998.2016.CrossRefGoogle Scholar
Wang, Y, Cerling, TE. 1994. A model for fossil tooth and bone diagenesis: implications for paleodiet reconstruction from stable isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 107:281289.CrossRefGoogle Scholar
Wang, Y, Deng, T. 2005. A 25 m.y. isotopic record of paleodiet and environmental change from fossil mammals and paleosols from the NE margin of the Tibetan Plateau. Earth and Planetary Science Letters 236:322338.CrossRefGoogle Scholar
Wang, Y, Kromhout, E, Zhang, C, Xu, Y, Parker, WC, Deng, T, Qiu, Z. 2008. Stable isotopic variations in modern herbivore tooth enamel, plants and water on the Tibetan Plateau: Implications for paleoclimate and paleoelevation reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 260:359374. doi: 10.1016/j.palaeo.2007.11.012.CrossRefGoogle Scholar
Wheeler, REM. 1947–1948. Brahmagiri and Chandravalli 1947; Megalithic and other cultures in Mysore State. Ancient India 4:180–310.Google Scholar
Zanazzi, A, Kohn, M. 2008. Ecology and physiology of White River mammals based on stable isotope ratios of teeth. Palaeogeography, Palaeoclimatology, Palaeoecology 257:2237.CrossRefGoogle Scholar
Zazzo, A. 2014. Bone and enamel carbonate diagenesis: a radiocarbon prospective. Palaeogeography, Palaeoclimatology, Palaeoecology 416:168178.CrossRefGoogle Scholar
Supplementary material: Image

Patel et al. supplementary material

Patel et al. supplementary material

Download Patel et al. supplementary material(Image)
Image 9 MB

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

NEW CHRONOLOGY FOR MEGALITHIC BURIALS IN VIDARBHA (CENTRAL INDIA): INSIGHTS INTO CONTEMPORARY HYDRO-CLIMATE AND FOOD HABITS
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

NEW CHRONOLOGY FOR MEGALITHIC BURIALS IN VIDARBHA (CENTRAL INDIA): INSIGHTS INTO CONTEMPORARY HYDRO-CLIMATE AND FOOD HABITS
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

NEW CHRONOLOGY FOR MEGALITHIC BURIALS IN VIDARBHA (CENTRAL INDIA): INSIGHTS INTO CONTEMPORARY HYDRO-CLIMATE AND FOOD HABITS
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *