Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-2qt69 Total loading time: 0.587 Render date: 2022-08-18T09:05:02.206Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Article contents

COMPARISON OF THERMAL DECOMPOSITION AND SEQUENTIAL DISSOLUTION—TWO SAMPLE PREPARATION METHODS FOR RADIOCARBON DATING OF LIME MORTARS

Published online by Cambridge University Press:  09 March 2021

Thomas Schrøder Daugbjerg*
Affiliation:
Aarhus AMS Centre (AARAMS), Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark Centre for Urban Network Evolutions (UrbNet), Aarhus University, Moesgård Allé 20, DK-8270Højbjerg, Denmark
Alf Lindroos
Affiliation:
Faculty of Science and Technology, Åbo Akademi University, Turku, Finland
Irka Hajdas
Affiliation:
Laboratory of Ion Beam Physics, ETH Zürich, Zürich, Switzerland
Åsa Ringbom
Affiliation:
Art History, Åbo Akademi University, Turku, Finland
Jesper Olsen
Affiliation:
Aarhus AMS Centre (AARAMS), Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark Centre for Urban Network Evolutions (UrbNet), Aarhus University, Moesgård Allé 20, DK-8270Højbjerg, Denmark
*
*Corresponding author. Email: thomas.daugbjerg@phys.au.dk.

Abstract

Dating lime mortar samples using the radiocarbon (14C) method can be difficult. This is because the contamination is similar to the primary dating material (CaCO3) and consequently difficult to remove. Mortar can also have late-in-formation pyrogenic carbonate from interactions with the environment after the initial hardening phase, such as recrystallization, fire damage or delayed hardening. When 14C dating a system of primary dating material, contamination and late-in-formation pyrogenic carbonate, one approach is multi-fraction dating with conclusiveness criteria. If a sample has sufficient contamination or late-in-formation pyrogenic carbonate, the criteria evaluate the result inconclusive. To improve inconclusive results from such samples, this study investigates sample preparation by thermal decomposition. Here samples that were inconclusively dated by the authors’ traditional method, sequential dissolution with 85% phosphoric acid, are investigated further. This study finds that CO2 thermally decomposed at low temperatures contains some late-in-formation pyrogenic carbonate. By rejecting CO2 decomposed at low temperatures, Kastelholm castle and Kimito church in Finland are conclusively and accurately dated. Furthermore, a preheating method removes some late-in-formation carbonate, but not enough for a conclusive result. Finally, thermal decomposition finds difficulty in discerning binder carbonate from limestone and marble contamination.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Bashaireh, K, Hodgins, GW. 2012. Lime mortar and plaster: a radiocarbon dating tool for dating Nabatean structures in Petra, Jordan. Radiocarbon 54(3–4):905914.CrossRefGoogle Scholar
Al-Bashaireh, K. 2013. Plaster and mortar radiocarbon dating of Nabatean and Islamic structures, south Jordan. Archaeometry 55(2):329354.CrossRefGoogle Scholar
Artioli, G, Secco, M, Addis, A, Bellotto, M. 2017. Role of hydrotalcite-type layered double hydroxides in delayed pozzolanic reactions and their bearing on mortar dating. In: Gruyter WD, editor. Cementitious materials: composition, properties, application. Berlin.CrossRefGoogle Scholar
Bakolas, A, Biscontin, G, Moropoulou, A, Zendri, E. 1998. Characterization of structural byzantine mortars by thermogravimetric analysis. Thermochimica Acta 321(1–2):151160.CrossRefGoogle Scholar
Baxter, MS, Walton, A. 1970. Radiocarbon dating of mortars. Nature 225(5236):937938.CrossRefGoogle ScholarPubMed
Bennett, CA, Franklin, NL. 1954. Statistical analysis in chemistry and the chemical industry. New York: Wiley.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Brown, TA, Southon, JR. 1997. Corrections for contamination background in AMS 14C measurements. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 123(1):208213.CrossRefGoogle Scholar
Capello, R-MD, Galán, MB. 1995. El anfiteatro de Augusta Emerita: rasgos arquitectónicos y problemática urbanística y cronológica, en el anfiteatro en la Hispania romana; Mérida, 26–28 de Noviembre de 1992. p. 247–264.Google Scholar
Dodson, VH. 1990. Concrete admixtures. Springer US.CrossRefGoogle Scholar
Donahue, DJ, Linick, TW, Jull, AJT. 1990. Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measuments. Radiocarbon 32:135142.CrossRefGoogle Scholar
Foland, KA. 1983. AR-40/AR-39 Incremental heating plateaus for biotites with excess argon. Isotope Geoscience 1(1):321.Google Scholar
Folk, RL, Valastro, S. 1976. Successful technique for dating of lime mortar by carbon-14. Journal of Field Archaeology 3(2):195201.CrossRefGoogle Scholar
Gardberg, CJ, Simo, H, Welin, PO. 2000. Nationalhelgedomen. Åbo domkyrka 1300–2000. Helsingfors.Google Scholar
Götze, J. 2012. Application of cathodoluminescence microscopy and spectroscopy in geosciences. Microscopy and Microanalysis 18(6):12701284.CrossRefGoogle ScholarPubMed
Hajdas, I, Lindroos, A, Heinemeier, J, Ringbom, Å, Marzaioli, F, Terrasi, F, Passariello, I, Capano, M, Artioli, G, Addis, A, Secco, M, Michalska, D, Czernik, J, Goslar, T, Hayen, R, Van Strydonck, M, Fontaine, L, Boudin, M, Maspero, F, Panzeri, L, Galli, A, Urbanova, P, Guibert, P. 2017. Preparation and dating of mortar samples—Mortar Dating Inter-Comparison Study (MODIS). Radiocarbon 59(6):18451858.CrossRefGoogle Scholar
Hale, J, Heinemeier, J, Lancaster, L, Lindroos, A, Ringbom, Å. 2003. Dating ancient mortar. American Scientist 91(3):130137.CrossRefGoogle Scholar
Hartman, M, Trnka, O, Veselý, V, Svoboda, K. 2001. Thermal dehydration of the sodium carbonate hydrates. Chemical Engineering Communications 185(1):116.CrossRefGoogle Scholar
Hausen, RT. 1890. Registrum ecclesiæ Aboensis–Åbo domkyrkas svartbok. Helsingfors.Google Scholar
Hausen, RT. 1910. Finlands medeltidsurkunder. Finlands Statsarkiv.Google Scholar
Heinemeier, J, Jungner, H, Lindroos, A, Ringbom, Å, von Konow, T, Rud, N. 1997. AMS C-14 dating of lime mortar. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 123(1–4):487495.Google Scholar
Heinemeier, J, Ringbom, Å, Lindroos, A, Sveinbjornsdottir, AE. 2010. Successful AMS C-14 dating of non-hydraulic lime mortars from the medieval churches of the Aland Islands, Finland. Radiocarbon 52(1):171204.CrossRefGoogle Scholar
Jones, BW, Milns, RD, Suetonius. 2002. The Flavian emperors. Bristol Classical Press.Google Scholar
Karunadasa, KSP, Manoratne, CH, Pitawala, H, Rajapakse, RMG. 2019. Thermal decomposition of calcium carbonate (calcite polymorph) as examined by in-situ high-temperature X-ray powder diffraction. Journal of Physics and Chemistry of Solids 134:2128.CrossRefGoogle Scholar
Labeyrie, J, Delibrias, G. 1964. Dating of old mortars by carbon-14 method. Nature 201(492):742.CrossRefGoogle Scholar
Lichtenberger, A, Lindroos, A, Raja, R, Heinemeier, J. 2015. Radiocarbon analysis of mortar from Roman and Byzantine water management installations in the Northwest Quarter of Jerash, Jordan. Journal of Archaeological Science-Reports 2:114127.CrossRefGoogle Scholar
Lindroos, A, Ringbom, Å, Kaisti, R, Heinemeier, J, Hodgins, G, Brock, F. 2011. Archaeology and history of churches in Baltic Region. Symposium, June 8–12, 2010, Visby, Sweden. In: Hansson J, Ranta H, editors. Archaeology and history of churches in Baltic region. Symposium, June 8–12, 2010, Visby, Sweden. Visby: iVisby Tryckeri AB. p. 108–121.Google Scholar
Lindroos, A, Regev, L, Oinonen, M, Ringbom, Å, Heinemeier, J. 2012. C-14 dating of fire-damaged mortars from medieval Finland. Radiocarbon 54(3–4):915931.CrossRefGoogle Scholar
Lindroos, A, Ringbom, Å, Heinemeier, J, Hodgins, G, Sonck-Koota, P, Sjoberg, P, Lancaster, L, Kaisti, R, Brock, F, Ranta, H, Caroselli, M, Lugli, S. 2018. Radiocarbon dating historical mortars: lime lumps and/or binder carbonate? Radiocarbon 60(3):875899.CrossRefGoogle Scholar
Lindroos, A, Ringbom, Å, Heinemeier, J, Hajdas, I, Olsen, J. 2020a. Delayed hardening and reactivation of binder calcite, common problems in radiocarbon dating of lime mortars. Radiocarbon:1–13.Google Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Daugbjerg, TS, Hajdas, I. 2020b. The Roman amphitheatre in Mérida, Spain–Augustan or Flavian? Radiocarbon dating results on mortar carbonate. Geochronometria 47(1):187195.CrossRefGoogle Scholar
Maciejewski, M, Oswald, H-R, Reller, A. 1994. Thermal transformations of vaterite and calcite. Thermochimica Acta 234:315328.CrossRefGoogle Scholar
Marshall, DJ. 1988. Cathodoluminescence of geological materials. Geological Magazine 128:404405.Google Scholar
Marzaioli, F, Lubritto, C, Nonni, S, Passariello, I, Capano, M, Terrasi, F. 2011. Mortar radiocarbon dating: preliminary accuracy evaluation of a novel methodology. Analytical Chemistry 83(6):20382045.CrossRefGoogle ScholarPubMed
Massazza, F. 2003. Pozzolana and pozzolanic cements. In: Hewlett, PC, editor. Lea’s chemistry of cement and concrete. Butterworth-Heinemann. p. 471635.Google Scholar
Mateos, CP. 2001. Augusta Emerita. La investigación arqueológica en un ciudad de época romana. Archivo Espanol de Arqueología 74:183208.CrossRefGoogle Scholar
Michalska, D, Czernik, J, Goslar, T. 2017. Methodological aspect of mortars dating (Poznan, Poland, MODIS). Radiocarbon 59(6):18911906.CrossRefGoogle Scholar
Murthy, MS, Marish, BR, Rajanandam, KS, Kumar, K. 1994. Investigation on the kinetics of thermal-decomposition of calcium-carbonate. Chemical Engineering Science 49(13):21982204.CrossRefGoogle Scholar
Nikula, S. 1973. Finlands kyrkor 7. Borgå stift del I. Åbolands prosteri I.: Museiverket.Google Scholar
Nikula, S. 1975. Finlands kyrkor 8. Borgå stift del II. Åbolands prosteri II.: Museiverket.Google Scholar
Olsen, J, Tikhomirov, D, Grosen, C, Heinemeier, J, Klein, M. 2017. Radiocarbon analysis on the new AARAMS 1MV Tandetron. Radiocarbon 59(3):905913.CrossRefGoogle Scholar
Ortega, LA, Zuluaga, MC, Alonso-Olazabal, A, Murelaga, X, Insausti, M, Ibanez-Etxeberria, A. 2012. Historic lime-mortar C-14 dating of Santa Maria La Real (Zarautz, northern Spain): extraction of suitable grain size for reliable c-14 dating. Radiocarbon 54(1):2336.CrossRefGoogle Scholar
Ponce-Anton, G, Ortega, LA, Zuluaga, MC, Alonso-Olazabal, A, Solaun, JL. 2018. Hydrotalcite and hydrocalumite in mortar binders from the medieval castle of Portilla (Alava, north Spain): accurate mineralogical control to achieve more reliable chronological ages. Minerals 8(8).CrossRefGoogle Scholar
Paama, L, Pitkänen, I, Rönkkömäki, H, Perämäki, P. 1998. Thermal and infrared spectroscopic characterization of historical mortars. Thermochimica Acta 320(1–2):127133.CrossRefGoogle Scholar
Rao, TR. 1996. Kinetics of calcium carbonate decomposition. Chemical Engineering & Technology 19(4):373377.CrossRefGoogle Scholar
Reimer, PJ, Austin, WEN, Bard, E, Bayliss, A, Blackwell, PG, Bronk Ramsey, C, Butzin, M, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kromer, B, Manning, SW, Muscheler, R, Palmer, JG, Pearson, C, van der Plicht, J, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Turney, CSM, Wacker, L, Adolphi, F, Büntgen, U, Capano, M, Fahrni, SM, Fogtmann-Schulz, A, Friedrich, R, Köhler, P, Kudsk, S, Miyake, F, Olsen, J, Reinig, F, Sakamoto, M, Sookdeo, A, Talamo, S. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4):725757.CrossRefGoogle Scholar
Ricci, G, Secco, M, Marzaioli, F, Terrasi, F, Passariello, I, Addis, A, Lampugnani, P, Artioli, G. 2020. The Cannero Castle (Italy): development of radiocarbon dating methodologies in the framework of the layered double hydroxide mortars. Radiocarbon 62(3):617631.CrossRefGoogle Scholar
Ringbom, Å, Hale, J, Heinemeier, J, Lindroos, A, Brock, F. 2006. Mortar dating in archaeological studies of Classical and Medieval structures. Second International Congress on Construction History. Cambridge. p. 26132634.Google Scholar
Ringbom, Å, Heinemeier, J, Lindroos, A, Brock, F. 2011. Mortar Dating and Roman pozzolana: results and interpretations. Commentationes Humanarum Litterarum 128:187208.Google Scholar
Ringbom, Å, Lindroos, A, Heinemeier, J, Sonck-Koota, P. 2014. 19 years of mortar dating: learning from experience. Radiocarbon 56(2):619635.CrossRefGoogle Scholar
Sonninen, EPE, Jungner, H. 1989. Dating of mortar and bricks, an example from Finland. In: Maniatis Y, editor. Archaeometry, Proceedings of the 25th International Symposium. Amsterdam-Oxford-New York-Toronto. p. 99–107.Google Scholar
Stuiver, M, Smith, C. 1965. Radiocarbon dating of ancient mortar and plaster. Washingon DC.Google Scholar
Synal, HA, Stocker, M, Suter, M. 2007. MICADAS: A new compact radiocarbon AMS system. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 259(1):713.Google Scholar
Toffolo, MB, Regev, L, Mintz, E, Poduska, KM, Shahack-Gross, R, Berthold, C, Miller, CE, Boaretto, E. 2017. Accurate radiocarbon dating of archaeological ash using pyrogenic aragonite. Radiocarbon 59(1):231249.CrossRefGoogle Scholar
Toffolo, MB, Regev, L, Mintz, E, Kaplan-Ashiri, I, Berna, F, Dubernet, S, Yan, X, Regev, J, Boaretto, E. 2020. Structural characterization and thermal decomposition of lime binders allow accurate radiocarbon age determinations of aerial lime plaster. Radiocarbon 62(3):633655.CrossRefGoogle Scholar
Van Strydonck, M, Dupas, M, Dauchotdehon, M, Pachiaudi, C, Marechal, J. 1986. The influence of contaminating (fossil) carbonate and the variations of Delta-C-13 in mortar dating. Radiocarbon 28(2A):702710.CrossRefGoogle Scholar
Vogel, JS, Southon, JR, Nelson, DE, Brown, TA. 1984. Performance of catalytically condensed carbon for use in accelerator mass-spectrometry. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 5(2):289293.Google Scholar
Yaseen, IAB, Al-Amoush, H, Al-Farajat, M, Mayyas, A. 2013. Petrography and mineralogy of Roman mortars from buildings of the ancient city of Jerash, Jordan. Construction and Building Materials 38:465471.CrossRefGoogle Scholar
2
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

COMPARISON OF THERMAL DECOMPOSITION AND SEQUENTIAL DISSOLUTION—TWO SAMPLE PREPARATION METHODS FOR RADIOCARBON DATING OF LIME MORTARS
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

COMPARISON OF THERMAL DECOMPOSITION AND SEQUENTIAL DISSOLUTION—TWO SAMPLE PREPARATION METHODS FOR RADIOCARBON DATING OF LIME MORTARS
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

COMPARISON OF THERMAL DECOMPOSITION AND SEQUENTIAL DISSOLUTION—TWO SAMPLE PREPARATION METHODS FOR RADIOCARBON DATING OF LIME MORTARS
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *