Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T09:57:02.862Z Has data issue: false hasContentIssue false

A 14C Calibration with AMS from 3500 to 3000 BC, Derived from A New High-Elevation Stone-Pine Tree-Ring Chronology

Published online by Cambridge University Press:  18 July 2016

Franz Dellinger
Affiliation:
Vienna Environmental Research Accelerator (VERA), Institut für Isotopenforschung und Kernphysik, Universität Wien, Währingerstrasse 17, A-1090 Wien, Austria
Walter Kutschera*
Affiliation:
Vienna Environmental Research Accelerator (VERA), Institut für Isotopenforschung und Kernphysik, Universität Wien, Währingerstrasse 17, A-1090 Wien, Austria
Kurt Nicolussi
Affiliation:
Institut für Hochgebirgsforschung, Universität Innsbruck, Innrain 52, A-6020 Innsbruck, Austria
Peter Schießling
Affiliation:
Institut für Hochgebirgsforschung, Universität Innsbruck, Innrain 52, A-6020 Innsbruck, Austria
Peter Steier
Affiliation:
Vienna Environmental Research Accelerator (VERA), Institut für Isotopenforschung und Kernphysik, Universität Wien, Währingerstrasse 17, A-1090 Wien, Austria
Eva Maria Wild
Affiliation:
Vienna Environmental Research Accelerator (VERA), Institut für Isotopenforschung und Kernphysik, Universität Wien, Währingerstrasse 17, A-1090 Wien, Austria
*
Corresponding author. Email: walter.kutschera@univie.ac.at.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High-precision radiocarbon accelerator mass spectrometry (AMS) measurements of a new high-altitude stone-pine tree-ring chronology from the European Alps were performed for a 500-yr stretch in the second half of the 4th millennium BC. A 14C calibration curve with a typical 1-σ uncertainty of about 20 14C yr was achieved. Although the general agreement of our data set with INTCAL98 is very good (confirming once more that INTCAL98 is also proper for calibration of samples of extraordinary sites), we found small deviations of 17 ± 5 14C yr, indicating possible seasonal effects of the delayed growing season at high altitude.

Type
Part II
Copyright
Copyright © The Arizona Board of Regents on behalf of the University of Arizona 

References

Hesshaimer, V. 1997. Tracing the global carbon cycle with bomb radiocarbon. [PhD dissertation]. Heidelberg: University of Heidelberg.Google Scholar
Kromer, B, Manning, S, Kuniholm, P, Newton, M, Spurk, M, Levin, I. 2001. Regional 14CO2 offsets in the troposphere: magnitude, mechanism, and consequences. Science 294:2529–32.CrossRefGoogle ScholarPubMed
Kutschera, W, Müller, W. 2003. “Isotope language” of the Alpine Iceman investigated with AMS and MS. Nuclear Instruments and Methods in Physics Research B 204:705–19.Google Scholar
Levin, I, Hesshaimer, V. 2000. Radiocarbon—a unique tracer of global carbon cycle dynamics. Radiocarbon 42(1):6980.Google Scholar
Manning, S, Kromer, B, Kuniholm, P, Newton, M. 2001. Anatolian tree rings and a new chronology for the East Mediterranean Bronze-Iron Ages. Science 294:2532–5.CrossRefGoogle Scholar
Masarik, J, Beer, J. 1999. Simulation of particle fluxes and cosmogenic nuclide production in the earth's atmosphere. Journal of Geophysical Research 104D: 12,099111.Google Scholar
Nicolussi, K, Schießling, P. 2001. Establishing a multi-millennial Pinus cembra chronology for the central Eastern Alps, Conference “Tree Rings and People,” 22–26 September 2001, Davos, Switzerland. http://www.wsl.ch/forest/dendro2001.Google Scholar
Nicolussi, K, Schießling, P. 2002. A 7000-year-long continuous tree-ring chronology from high-elevation sites in the central Eastern Alps. Dendrochronology, Environmental Change and Human History, Abstracts: 251–252, 6th International Conference on Dendrochronology, Quebec City, Canada, 22–27 August 2002.Google Scholar
Puchegger, S, Rom, W, Steier, P. 2000. Automated evaluation of 14C AMS measurements. Nuclear Instruments and Methods in Physics Research B 172:274–80.CrossRefGoogle Scholar
Reimer, JR. 2001. A new twist in the radiocarbon tale. Science 294:2494–5.CrossRefGoogle ScholarPubMed
Rozanski, K, Stichler, W, Gonfiantini, R, Scott, EM, Beukens, R, Kromer, B, van der Plicht, J. 1992. The IAEA 14C intercomparison exercise 1990. Radiocarbon 34(3):506–19.Google Scholar
Scott, EM. 2003. The Fourth International Radiocarbon Intercomparison (FIRI). Radiocarbon 45(2):135291.CrossRefGoogle Scholar
Steier, P, Dellinger, F, Kutschera, W, Rom, W, Wild, EM. 2004. Pushing the precision limit of 14C measurements with AMS. Radiocarbon, these proceedings.Google Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3):1041–83.Google Scholar
Vogel, JS, Southon, JR, Nelson, DE, Brown, T. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 5:289–93.Google Scholar