Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T23:55:44.248Z Has data issue: false hasContentIssue false

A wetland oasis at Wadi Gharandal spanning 125–70 ka on the human migration trail in southern Jordan

Published online by Cambridge University Press:  05 November 2020

Bety S. Al-Saqarat
Affiliation:
School of Science, Geology Department, the University of Jordan, Amman, Jordan
Mahmoud Abbas*
Affiliation:
Institute of Marine Sciences, Shantou University, Shantou, China
Zhongping Lai
Affiliation:
Institute of Marine Sciences, Shantou University, Shantou, China
Songlin Gong
Affiliation:
Luminescence Dating Laboratory, Three Gorges Research Center of Geo-Hazards, China University of Geosciences, Wuhan, China
Mustafa M. Alkuisi
Affiliation:
School of Science, Geology Department, the University of Jordan, Amman, Jordan
Abdalla M.B. Abu Hamad
Affiliation:
School of Science, Geology Department, the University of Jordan, Amman, Jordan
Paul A. Carling
Affiliation:
Geography and Environmental Science, University of Southampton, Southampton, UK
John D. Jansen
Affiliation:
GFÚ Institute of Geophysics, Czech Academy of Sciences, Prague, Czechia
*
*Corresponding author at: subariny_m2008@yahoo.com (M. Abbas).

Abstract

Former lakes and wetlands can provide valuable insights to the late Pleistocene environments encountered by the first humans to enter the Levant from Africa. Fluvial incision along Wadi Gharandal in hyperarid southern Jordan has exposed remnants of a small riverine wetland that accumulated as a sedimentary sequence up to ~20 m thick. We conducted a chronometric and sedimentological study of this wetland, including 10 optically stimulated luminescence dates. The wetland sequence accumulated during the period ~125 to 70 ka in response to a positive water balance coupled with a (possibly coseismic) landslide that dammed the outlet. The valley fill was dissected when the dam was incised shortly after ~36 ± 3 ka. Comparison of our ages with regional palaeoclimate indicates that the Gharandal oasis developed during the relatively humid Marine Isotope Stage 5. A minimum age of 74 ± 7 ka for two Levallois flakes collected from stratified sediments suggests that the oasis was visited by humans during the critical 130–90 ka time window of human migration out of Africa. Gharandal joins a growing network of freshwater sites that enabled humans to cross areas of the Levant and Arabia along corridors of human dispersal.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbas, M., Al-Saqarat, B., Al-Shdaifat, A., 2016. Paleoclimate reconstruction of the Quaternary sediments near the Gulf of Aqaba (Southern Jordan). Arabian Journal of Geosciences 9, 361.CrossRefGoogle Scholar
Aitken, M. J., 1998. An Introduction to Optical Dating. Oxford University Press, Oxford.Google Scholar
Al-Nahar, M., Clark, G.A., 2009. The Lower Paleolithic in Jordan. Al-Majala al Ordoniyya Lltarekh w Al athar [Jordanian Journal of History and Archaeology] 3, 2.Google Scholar
Almomani, T., Al Shraydeh, S., Shakhatreh, H., Alroud, R., Brezat, A., Obayat, A., Atyeh, A., et al. , 2018. Water yearbook hydrological year 2016–2017. Ministry of Water and Irrigation, Amman. http://www.mwi.gov.joGoogle Scholar
Armitage, S.J., Jasmin, S.A., Marks, A.E., Parker, A.G., Usik, V.I., Uerpmann, H.-P., 2011. The southern route “Out of Africa”: evidence for an early expansion of modern humans into Arabia. Science 331, 453456.CrossRefGoogle ScholarPubMed
Armon, M., Dente, E., Smith, J.A., 2018. Synoptic-scale control over modern rainfall and flood patterns in the Levant drylands with implications for past climates. Journal of Hydrometeorology 19, 10771096.CrossRefGoogle Scholar
Bae, C.J., Douk, K., Petraglia, M.D., 2017. On the origin of modern humans: Asian prospective. Science 358, eeai 9067.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A., Hawkesworth, C.J., 2003. Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochimica et Cosmochimica Acta 67, 31813199.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., Kaufman, A., 1997. Late Quaternary paleoclimate in the eastern Mediterranean region from stable isotope analysis of speleothems at Soreq Cave, Israel. Quaternary Research 47, 155168.CrossRefGoogle Scholar
Bar-Matthews, M., Keinan, J., Ayalon, A., 2019. Hydro-climate research of the late quaternary of the Eastern Mediterranean-Levant region based on speleothems research—a review. Quaternary Science Reviews 221, 105872.CrossRefGoogle Scholar
Bar-Yosef, O., Belfer-Cohen, A., 2013. Following Pleistocene road signs of human dispersals across Eurasia. Quaternary International 285, 3043.CrossRefGoogle Scholar
Bartov, Y., Goldstein, S.L., Stein, M., Enzel, Y., 2003. Catastrophic arid episodes in the Eastern Mediterranean linked with the North Atlantic Heinrich events. Geology 31, 439442.2.0.CO;2>CrossRefGoogle Scholar
Bartov, Y., Stein, M., Enzel, Y., Agnon, A., Reches, Z., 2002. Lake levels and sequence stratigraphy of Lake Lisan, the late Pleistocene precursor of the Dead Sea. Quaternary Research 57, 921.CrossRefGoogle Scholar
Begin, B.Z., Ehrlich, A., Nathan, Y., 1974. Lake Lisan—the Pleistocene precursor of the Dead Sea. Geological Survey of Israel Bulletin 63, 130Google Scholar
Bender, F., 1974. Geology of Jordan. Borntraeger, Berlin.Google Scholar
Bookman, R., Bartov, Y., Enzel, Y., Stein, M., 2006. Quaternary lake levels in the Dead Sea basin: two centuries of research. Geological Society of America Special Paper 401, 155170.Google Scholar
Braun, P., 2015. Pleistocene Ostracods from Wadi Gharandal and Jurf Ed Darawish, Southern Jordan. Master's thesis, Freie Berlin Universitat, Berlin, Germany.Google Scholar
Breeze, P.S., Groucutt, H.S., Drake, N.A., White, T.S., Jennings, R.P., Petraglia, M.D., 2016. Palaeohydrological corridors for hominin dispersals in the Middle East ~250–70,000 years ago. Quaternary Science Reviews 144, 155185.CrossRefGoogle Scholar
Catlett, G., Rech, J., Pigati, J., Al Kuisi, M., Li, S., Honke, J., 2017. Activation of a small ephemeral lake in southern Jordan during the last full glacial period and its paleoclimatic implications. Quaternary Research 29, 112.Google Scholar
Cordova, C.E., Nowell, A., Bisson, M., Ames, C.J.H., Pokines, J., Chang, M., Al- Nahar, M., 2013. Interglacial and glacial desert refugia and the middle Paleolithic of the Azraq Oasis, Jordan. Quaternary International 300, 94110.CrossRefGoogle Scholar
Cowardin, L.M., Carter, V., Golet, F.C., LaRoe, E.T., 1979. Classification of wetlands and deepwater habitats of the United States. U.S. National Oceanographic and Atmospheric Administration Office of Coastal Zone Management, Washington, DC.Google Scholar
Darby, R., Darby, E., 2015. The Late Roman fort at `Ayn Gharandal, Jordan: interim report on the 2009–2014 field seasons. Journal of Roman Archaeology 28, 6783.CrossRefGoogle Scholar
Davies, C.P., 2005. Quaternary palaeoenvironments and potential for human exploitation of the Jordan Plateau desert interior. Geoarchaeology 20, 379400.CrossRefGoogle Scholar
Engel, M., Matter, A., Parker, A.G., Parton, A., Petraglia, M.D., Preston, G.W., Preusser, F., 2016. Lakes or wetlands? A comment on “The middle Holocene climatic records from Arabia: Reassessing lacustrine environments, shift of ITCZ in Arabian Sea, and impacts of the southwest Indian and African monsoons” by Enzel et al. Global and Planetary Change 148, 258267.CrossRefGoogle Scholar
Enzel, Y., Kushnir, Y., Quade, J., 2015. The middle Holocene climatic records from Arabia: reassessing lacustrine environments, shift of ITCZ in Arabian Sea, and impacts of the southwest Indian and African monsoons. Global and Planetary Change 29, 6991.CrossRefGoogle Scholar
Fick, S.E., Hijmans, R.J., 2017. WorldClim2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37, 43024315.CrossRefGoogle Scholar
Frumkin, A., Bar-Yosef, O., Schwarcz, H.P, 2011. Possible paleohydrologic and paleoclimatic effects on hominin migration and occupation of the Levantine Middle Paleolothic. Journal of Human Evolution 60, 437451.CrossRefGoogle Scholar
Galli, P., 1999. Active tectonics along Wadi Araba-Jordan Valley Transform fault. Geophysical Research 104, 27772796.CrossRefGoogle Scholar
Ginat, H., Opitz, S., Ababneh, L., Faershtein, G., Lazar, M., Porat, M., Mischke, S., 2017. Pliocene–Pleistocene waterbodies and associated deposits in southern Israel and southern Jordan. Journal of Arid Environments 148, 1433.CrossRefGoogle Scholar
Goder-Goldberger, M., Crouvi, O., Caracuta, V., Horowitz, L.K., Neumann, F.H., Porat, N., Scott, L., et al. , 2020. The Middle to Upper Paleolithic transition in the southern Levant: new insights from the late Middle Paleolithic site of Far'ah II, Israel. Quaternary Science Reviews, 237, 106304.CrossRefGoogle Scholar
Goldberg, P., 1986. Late Quaternary environmental history of the southern Levant. Geoarchaeology 1, 225244.CrossRefGoogle Scholar
Grant, K.M., Grimm, R., Mikolajewicz, U., Marino, G., Zeigler, M., Rohling, E.J., 2016. The timing of Mediterranean sapropel deposition relative to insolation, sea-level and African monsoon changes. Quaternary Science Reviews 140, 125141.CrossRefGoogle Scholar
Greenbaum, N., Ben-Zvi, A., Haviv, I., Enzel, Y., 2006. The hydrology and paleohydrology of the Dead Sea tributaries. Geological Survey of America Special Paper 401, 6393.Google Scholar
Groucutt, H.S., Grün, R., Zalmout, I.A.S., Drake, N.A., Armitage, S.J., Candy, I., Clark-Wilson, R., et al. , 2018. Homo sapiens in Arabia by 85,000 years ago. Nature Ecology & Evolution 2, 800809.CrossRefGoogle ScholarPubMed
Groucutt, H.S., Petraglia, M.D., 2012. The prehistory of the Arabian Peninsula: deserts, dispersals, and demography. Evolution Anthropology 21,113125.CrossRefGoogle ScholarPubMed
Grün, R., Stringer, C., McDermott, F., Nathan, R., Porat, N., Robertson, S., Taylor, L., Mortimer, G., Eggins, S., McCulloch, M., 2005. U-series and ESR analyses of bones and teeth relating to the human burials from Skhul. Journal of Human Evolution 49, 316334.CrossRefGoogle ScholarPubMed
Henry, D.O., 2017. The Upper and Epipaleolithic of southern Jordan. In: Enzel, Y., Bar-Yosef, O., (Eds.), Quaternary of the Levant: Environments, Climate Change, and Humans. Cambridge University Press, Cambridge, UK, pp. 659667.CrossRefGoogle Scholar
Henry, D.O., Bauer, H.A., Kerry, K.W., Beaver, J.E., White, J.J, 2001. Survey of prehistoric sites, Wadi Araba, southern Jordan. Bulletin of the American Schools of Oriental Research 323, 119.CrossRefGoogle Scholar
Ibrahim, K., 1993. The Geology of the Wadi Gharandal Area. Bulletin No. 24. Ministry of Energy and Mineral Resources, Amman.Google Scholar
Ibrahim, K.M., and Rashdan, M., 1988. Wadi Gharandal Map (sheet 3050III). 1:50,000. Geological Map Series. Ministry of Energy and Mineral Resources, Amman.Google Scholar
Jansen, J.D., Brierley, G.J., 2004. Pool-fills: a window to palaeoflood history and response in bedrock-confined rivers. Sedimentology 51, 901925.CrossRefGoogle Scholar
Jones, M., Richter, T., 2011. Paleoclimatic and archeological implications of Pleistocene and Holocene environments in Azraq, Jordan. Quaternary Research 76, 363372.CrossRefGoogle Scholar
Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 3, 259263.CrossRefGoogle Scholar
Lai, Z.P., 2006. Testing the use of an OSL standardized growth curve (SGC) for De determination on quartz from the Chinese Loess Plateau. Radiation Measurements 41, 916.CrossRefGoogle Scholar
Lai, Z.P., 2010. Chronology and the upper dating limit for loess samples from Luochuan section in Chinese Loess Plateau using quartz OSL SAR protocol. Journal of Asian Earth Sciences 37, 176185.CrossRefGoogle Scholar
Lai, Z.P., Kaiser, K., Brückner, H., 2009. Luminescence dated aeolian deposits of late Quaternary age in the southern Tibetan Plateau and their implications for landscape history. Quaternary Research 72, 421430.CrossRefGoogle Scholar
Lai, Z.P., Mischke, S., Madsen, D., 2013. Paleoenvironmental implications of new OSL dates on the formation of the “Shell Bar” in the Qaidam basin, northeastern of Qinghai–Tibetan Plateau. Journal Paleoliminology 51, 197210.CrossRefGoogle Scholar
Lai, Z.P., Wintle, A.G., 2006. Locating the boundary between the Pleistocene and the Holocene in Chinese loess using luminescence. The Holocene 16, 893899.CrossRefGoogle Scholar
Lai, Z.P., Wintle, A.G, Thomas, D.S.G., 2007. Rates of dust deposition between 50 ka and 20 ka revealed by OSL dating at Yuanbao on the Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 248, 431439.CrossRefGoogle Scholar
Lazar, B., Stein, M., 2011. Freshwater on the route of hominids out of Africa revealed by U–Th in Red Sea corals. Geology 39, 10671070.CrossRefGoogle Scholar
Le Béon, M., Klinger, Y., Al-Qaryouti, M., Mériaux, A.-S., Finkel, R.C., Elias, A., Mayyas, O., Ryerson, F.J., Tapponnier, P., 2010. Early Holocene and Late Pleistocene slip rates of the southern Dead Sea Fault determined from 10Be cosmogenic dating of offset alluvial deposits. Journal of Geophysical Research 115, B11414.CrossRefGoogle Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, 117.Google Scholar
Litt, T., Ohlwein, C., Neumann, F., Hense, A., Stein, M., 2012. Holocene climate variability in the Levant from the Dead Sea pollen record. Quaternary Science Reviews 49, 95105.CrossRefGoogle Scholar
Macumber, P.G., 2002. Evolving landscape and environment in Jordan. In: MacDonald, B., Adams, R., Bienkowski, P., (Eds.), The Archaeology of Jordan. Sheffield Academic Press, Sheffield, UK, pp. 130.Google Scholar
Makhlouf, I.M., Amireh, B.S., Abed, A.M., 2010. Sedimentology and morphology of Quaternary alluvial fans in Wadi Araba, southwest Jordan. Jordan Journal of Earth and Environmental Sciences 3, 7998.Google Scholar
Makovsky, Y., Wunch, A., Ariely, R., Shaked, Y., Rivlin, A., Shemesh, A., Ben Avraham, Z., Agnon, A., 2008. Quaternary transform kinematics constrained by sequence stratigraphy and submerged coastline features: the Gulf of Aqaba. Earth and Planetary Science Letters 271, 109122.CrossRefGoogle Scholar
Matmon, A., Crouvi, O., Enzel, Y., Bierman, P., Larsen, J., Porat, N., Amit, R., Caffee, M., 2003. Complex exposure histories of chert clasts in the Late Pleistocene shorelines of Lake Lisan, southern Israel. Earth Surface Process and Landforms 28, 493506.CrossRefGoogle Scholar
Mischke, S., Ginat, H., Al-Saqarat, B., Faershtein, G., Porat, N., Braun, P., Rech, J., 2017. Fossil-based reconstructions of ancient water bodies in the Levantine deserts. In: Enzel, Y., Bar-Yosef, O., (Eds.), Quaternary of the Levant: Environments, Climate Change, and Humans. Cambridge University Press, Cambridge, UK, pp. 381390.CrossRefGoogle Scholar
Mischke, S., Ginat, H., Al-Saqarat, B., Levin, A., 2012. Ostracods from water bodies in hyperarid Israel and Jordan as habitat and water chemistry indicators. Ecological Indicators 14, 8286.CrossRefGoogle Scholar
Mischke, S., Opitz, S., Kalbe, J., Ginat, H., Al-Saqarat, B., 2015. Paleoenvironmental inferences from late Quaternary sediments of the Al Jafr Basin, Jordan. Quaternary International 30, 154167.CrossRefGoogle Scholar
Moumani, K., Alexander, J., Bateman, M.D., 2003. Sedimentology of the late Quaternary Wadi Hasa Marl Formation of central Jordan: a record of climate variability. Palaeogeography, Palaeoclimatology, Palaeoecology 191, 221242.CrossRefGoogle Scholar
Murray, A.S., Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.CrossRefGoogle Scholar
Neev, D., Emery, K.O., 1967. The Dead Sea: depositional processes and environments of evaporites. Israel Geological Survey Bulletin 41, 147.Google Scholar
Niemi, T.M., 2009. Paleoseismology and Archaeoseismology of Sites in Aqaba and Petra, Jordan. Field Guide. In: Amit, R; Agnon, A; Matmon, A (Eds.), The Dead Sea Rift as a natural laboratory for earthquake behaviour: prehistorical, historical and recent seismicity. Dead Sea workshop, 16th-23rd February, pp. 119124.Google Scholar
Petit-Maire, N., Carbonel, P., Reyss, J.L., Sanlaville, P., Abed, A., Bourrouilh, R., Fontugne, M., Yasin, S., 2010. A vast Eemianpalaeolake in Southern Jordan (29°N). Global and Planetary Change 57, 921.Google Scholar
Petraglia, M., Breeze, P., Groucutt, H., 2019. Blue Arabia, green Arabia: examining human colonisation and dispersal models. In: Rasul, N.M.A., Stewart, I.C.F. (Eds.), Geological Setting, Palaeoenvironment and Archaeology of the Red Sea. Springer, Cham. pp. 675683.CrossRefGoogle Scholar
Petraglia, M.D., Alsharekh, A.M., Crassard, R., Drake, N.A., Groucutt, H.S., Parker, A.G., Roberts, R.G., 2011. Middle Paleolithic occupation on a Marine isotope stage 5 lakeshore in the Nefud Desert, Saudi Arabia. Quaternary Science Reviews 30, 15551559.CrossRefGoogle Scholar
Pigati, J.S., Quade, J., Wilson, J., Jull, A.J.T., Lifton, N.A., 2007. Development of a low-background vacuum extraction system for 14C dating of old (40–60ka) samples. Quaternary International 166, 414.CrossRefGoogle Scholar
Quade, J., Forester, R.M., Pratt, W.L., Carter, C., 1998. Black mats, spring-fed streams, and Late-Glacial-age recharge in the Southern Great Basin. Quaternary Research 49, 129148.CrossRefGoogle Scholar
Rech, J.A., Ginat, H., Gentry, A., Catlett, A., Mischke, S., Winer Tully, E., Pigati, J.S., 2017, Pliocene–Pleistocene water bodies and associated deposits in southern Israel and southern Jordan. In: Enzel, Y., Bar-Yosef, O., (Eds.), Quaternary of the Levant: Environments, Climate Change, and Humans. Cambridge University Press, Cambridge, UK, pp. 127134.CrossRefGoogle Scholar
Roberts, H.M., Duller, G.A.T., 2004. Standardised growth curves for optical dating of sediment using multiple-grain aliquots. Radiation Measurements 38, 241252.CrossRefGoogle Scholar
Roberts, P., Stewart, M., Alagaili, A.N., Breeze, P., Candy, I., Drake, N., Groucutt, H.S., et al. , 2018. Fossil herbivore stable isotopes reveal middle Pleistocene hominin palaeoenvironment in “Green Arabia.” Nature Ecology & Evolution 2, 18711878.CrossRefGoogle Scholar
Rosenberg, T.M., Preusser, F., Blechschmidt, I., Fleitmann, D., Jagher, R., Matter, A., 2012. Late Pleistocene palaeolake in the interior of Oman: a potential key-area for the dispersal of anatomically modern humans out-of-Africa? Journal of Quaternary Science 27, 1316.CrossRefGoogle Scholar
Rosenberg, T.M., Preusser, F., Fleitmann, D., Schwalb, A., Penkman, K., Schmid, T.W., Al-Shanti, M.A., Kadi, K., Matter, A., 2011. Humid periods in southern Arabia: windows of opportunity for modern human dispersal. Geology 39,11151118.CrossRefGoogle Scholar
Rosenberg, T.M., Preusser, F., Risberg, J., Plikk, A., Kadi, K.A., Matter, A., Fleitmann, D., 2013. Middle and Late Pleistocene humid periods recorded in palaeolake deposits of the Nafud desert, Saudi Arabia. Quaternary Science Reviews 70, 109123.CrossRefGoogle Scholar
Rossignol-Strick, M., 1985. Mediterranean Quaternary sapropels, an immediate response of the African monsoon to variation of insolation. Palaeogeography, Palaeoclimatology, Palaeoecology 49, 237263.CrossRefGoogle Scholar
Schick, A. P., Lekach, J., 1993. An evolution of two ten-year sediment budgets, Nahal Yael, Israel. Physical Geography 14, 225238.CrossRefGoogle Scholar
Tooth, S., McCarthy, T.S., 2007. Wetlands in drylands: geomorphological and sedimentological characteristics, with emphasis of examples from southern Africa. Progress in Physical Geography 31, 341.CrossRefGoogle Scholar
Torfstein, A., 2019. Climatic cycles in the southern Levant and their global climatic connections. Quaternary Science Reviews 221, 105881.CrossRefGoogle Scholar
Torfstein, A., Enzel, Y., 2017. Dead Sea lake level changes and Levant paleoclimate. In: Enzel, Y., Bar-Yosef, O. (Eds.), Quaternary of the Levant: Environments, Climate Change, and Humans. Cambridge University Press, Cambridge, pp. 115125.CrossRefGoogle Scholar
Torfstein, A., Goldstein, S.L., Kushnir, Y., Enzel, Y., Haug, G., Stein, M., 2015. Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial. Earth and Planetary Science Letters 412, 235244.CrossRefGoogle Scholar
Vaks, A., Bar-Matthews, M., Ayalon, A., Matthews, A., Frumkin, A., Dayan, U., Halicz, L., Almogi-Labin, A., Schilman, B., 2006. Paleoclimate and location of the border between Mediterranean climate region and the Saharo–Arabian Desert as revealed by speleothems from the northern Negev Desert, Israel. Earth and Planetary Science Letters 249, 384399.CrossRefGoogle Scholar
Vaks, A., Bar-Matthews, M., Ayalon, A., Matthews, A., Halicz, L., Frumkin, A., 2007. Desert speleothems reveal climatic window for African exodus of early modern humans. Geology 35, 831834.CrossRefGoogle Scholar
Vaks, A., Bar-Matthews, M., Ayalon, A., Schilman, B., Gilmour, M., Hawkesworth, C.J., Frumkin, A., Kaufman, A., Matthews, A., 2003. Paleoclimate reconstruction based on the timing of speleothem growth and oxygen and carbon isotope composition in a cave located in the rain shadow in Israel. Quaternary Research 59, 182193.CrossRefGoogle Scholar
Vaks, A., Bar-Matthews, M., Matthews, A., Ayalon, A., Frumkin, A., 2010. Middle–Late Quaternary paleoclimate of northern margins of the Saharan-Arabian desert: reconstruction from speleothems of Negev desert, Israel. Quaternary Science Reviews 29, 26472662.CrossRefGoogle Scholar
Waldmann, N., Stein, M., Ariztegui, D., Starinsky, A., 2009. Stratigraphy, depositional environments and level reconstruction of the lastinterglacial Lake Samra in the Dead Sea Basin. Quaternary Research 72, 115.CrossRefGoogle Scholar
Waldmann, N., Torfstein, A., Stein, M., 2010. Northward intrusions of low- and midlatitude storms across the Saharo-Arabian belt during past interglacials. Geology 38, 567570.CrossRefGoogle Scholar
Winer, E., 2010. Interpretation and Climatic Significance of Late Quaternary Valley-Fill Deposits in Wadi Hasa, West-Central Jordan. Master's thesis, Miami University, Oxford, Ohio.Google Scholar
Yasin, S., 2000. Late Quaternary Paleoclimatology of the Mudawarra Region, Jordan. Doctoral dissertation, Department of Geology, University of Jordan, Amman.Google Scholar
Yu, L.P., Lai, Z.P., 2014. Holocene climate change inferred from stratigraphy and OSL chronology of aeolian sediments in the Qaidam Basin, northeastern Qinghai–Tibetan Plateau. Quaternary Research 81, 488499.CrossRefGoogle Scholar