Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-19T06:30:27.792Z Has data issue: false hasContentIssue false

Weakening of northeast trade winds during the Heinrich stadial 1 event recorded by dune field stabilization in tropical Brazil

Published online by Cambridge University Press:  05 October 2017

Carlos Conforti Ferreira Guedes*
Affiliation:
Departamento Geologia, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Curitiba PR 81531-980, Brazil
Paulo César Fonseca Giannini
Affiliation:
Departamento de Geologia Sedimentar e Ambiental, Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, São Paulo SP 05508-080, Brazil
André Oliveira Sawakuchi
Affiliation:
Departamento de Geologia Sedimentar e Ambiental, Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, São Paulo SP 05508-080, Brazil
Regina DeWitt
Affiliation:
Department of Physics, East Carolina University, Howell Science Complex, Room C-209, 1000 E. 5th Street, Greenville, North Carolina 27858, USA
Vitor Ângelo Paulino de Aguiar
Affiliation:
Instituto de Física, Universidade de São Paulo, Rua do Matão, Travessa R, 187, São Paulo SP 05508-090, Brazil
*
*Corresponding author at: Departamento Geologia, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Curitiba PR 81531-980, Brazil. E-mail address: ccfguedes@gmail.com (C.C.F. Guedes).

Abstract

The identification, characterization, and mapping of large areas of stabilized eolian features along the tropical northeastern Brazilian coast enabled recognition of the existence of one of the largest Quaternary dune fields (16,000 km2) in South America. This paleodune system is observed inland of the Lençóis Maranhenses transgressive dune field (2.5°S, 43°W) and comprises deflation plains, stabilized parabolic dunes, and barchanoid chains developed under the action of northeast (NE) trade winds. Optically stimulated luminescence ages coupled with geomorphological analysis were used to constrain the time of dune field stabilization. Ages of stabilization of parabolic dunes and barchanoid chains throughout this paleodune system range between 19 to 14 ka showing heterogeneous dune stabilization by vegetation growth during a 5 ka time interval. Dune field stabilization is related to a decrease in NE trade wind strength and increase in precipitation as a consequence of the southward shift of the Intertropical Convergence Zone during the Heinrich stadial 1 event (18–15 ka), which resulted in a lower eolian drift potential, less sand input by alongshore transport, and low sediment availability to eolian transport, due to an increase in moisture to support vegetation growth and rising relative sea level.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adamiec, G., Aitken, M.J., 1998. Dose-rate conversion factors: new data: Ancient TL 16, 3750.Google Scholar
Almeida-Filho, R., Rossetti, D.F., Miranda, F.P., Ferreira, F.J., Silva, C., Beisl, C., 2009. Quaternary reactivation of a basement structure in the Barreirinhas Basin, Brazilian Equatorial Margin. Quaternary Research 72, 102110.Google Scholar
Arz, H.W., Patzold, J., Wefer, G., 1999. The deglacial history of the western tropical Atlantic as inferred from high resolution stable isotope records off northeastern Brazil. Earth and Planetary Science Letters 167, 105117.Google Scholar
Baker, S., Diz, P., Vautravers, M.J., Pike, J., Knorr, G., Hall, I.R., Broecker, W.S., 2009. Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 457, 10971103.Google Scholar
Bateman, M.D., Carr, A.S., Dunajko, A.C., Holmes, P.J., Roberts, D.L., McLaren, S.J., Bryant, R.G., Marker, M.E., Murray-Wallace, C., 2010. The evolution of coastal barrier systems: a case study of the Middle-Late Pleistocene Wilderness barriers, South Africa. Quaternary Science Reviews 30, 6381.CrossRefGoogle Scholar
Behling, H., Arz, H.W., Pätzold, J., Wefer, G., 2000. Late Quaternary vegetation and climate dynamics in northeastern Brazil, inferences from marine core GeoB 3104-1. Quaternary Science Reviews 19, 981994.Google Scholar
Bittencourt, A.C.S.P., Dominguez, J.M.L., Martin, L., Silva, I.R., 2005. Longshore transport on the northeastern Brazilian coast and implication to the location of large scale accumulative and erosive zones: an overview. Marine Geology 219, 219234.Google Scholar
Chase, B., 2009. Evaluating the use of dune sediments as a proxy for palaeo-aridity: a southern African case study. Earth-Science Reviews 93, 3145.Google Scholar
Corrêa, I.C.S., 1996. Les variations du niveau de la mer durant lês derniers 17.500 ans PB: l’exemple de la plate-forme continentale du Rio Grande do Sul-Brésil. Marine Geology 130, 163178.Google Scholar
Cruz, F.W. Jr., Vuille, M., Burns, S.J., Wang, X., Cheng, H., Werner, M., Edwards, R.L., Karmann, I., Auler, A.S., Nguyen, H., 2009. Orbitally driven east-west antiphasing of South American precipitation. Nature Geoscience 2, 210214.Google Scholar
Denton, G.H., Anderson, R.F., Toggweiler, J.R., Edwards, R.L., Schaefer, J.M., Putnam, A.E., 2010. The last glacial termination. Science 328, 16521656.Google Scholar
Folk, R.L., Ward, W.C., 1957. Brazos river bar: a study in the significance of size parameters. Journal of Sedimentary Petrology 27, 327.Google Scholar
Fujioka, T., Chappell, J., Fifield, L.K., Rhodes, E.J., 2009. Australian desert dune fields initiated with Pliocene-Pleistocene global climatic shift. Geology 37, 5154.Google Scholar
Gaiero, D.M., 2007. Dust provenance in Antarctic ice during glacial periods: from where in southern South America? Geophysical Research Letters 34, L17707. http://dx.doi.org/10.1029/2007GL030520.CrossRefGoogle Scholar
Galehouse, J.S., 1971. Point-counting. In: Carver, R.E. (Ed.), Procedures in Sedimentary Petrology. Wiley-Interscience, New York, pp. 385407.Google Scholar
Giannini, P.C.F., Sawakuchi, A.O., Martinho, C.T., Tatumi, S.H., 2007. Eolian depositional episodes controlled by Late Quaternary relative sea level changes on the Imbituba-Laguna coast (southern Brazil). Marine Geology 237, 143168.Google Scholar
Hesp, P.A., Maia, L.M., Claudino-Sales, V., 2009. The Holocene barriers of Maranhão, Piauí and Ceará States, northeastern Brazil. In: Dillenburg, S.R., Hesp, P. (Eds.), Geology of the Brazilian Coastal Barriers: Lecture Notes in Earth Sciences. Springer, Berlin, pp. 325345.Google Scholar
Hilbert, N.N., Guedes, C.C., Giannini, P.C., 2016. Morphologic and sedimentologic patterns of active aeolian dune‐fields on the east coast of Maranhão, northeast Brazil. Earth Surface Processes and Landforms 41, 8797.Google Scholar
Jacob, J., Disnar, J.R., Boussafir, M., Sifeddine, A., Turcq, B., Alburquerque, A.L.S., 2004. Major environmental changes recorded by lacustrine sedimentary organic matter since the last glacial maximum near the equator (Lagos do Caçó, NE Brazil). Palaeogeography, Palaeoclimatology, Palaeoecology 205, 183197.Google Scholar
Jaeschke, A., Ruhlemann, C., Arz, H., Heil, G., Lohmann, G., 2007. Coupling of millennial-scale changes in sea surface temperature and precipitation of northeastern Brazil with high-latitude climate shifts during the last glacial period. Paleoceanography 22, 110.Google Scholar
Kanner, L.C., Burns, S.J., Cheng, H., Edwards, R.L., 2012. High-Latitude forcing of the South American summer monsoon during the last glacial. Science 353, 570573.Google Scholar
Kocurek, G., 1999. The aeolian rock record. In: Goudie, A.S., Livingstone, I., Stokes, S. (Eds.), Aeolian Environments, Sediments and Landforms. Wiley, Chichester, UK, pp. 239259.Google Scholar
Kocurek, G., Lancaster, N., 1999. Aeolian system sediment state: theory and Mojave Desert Kelso dune field example. Sedimentology 46, 505515.Google Scholar
Kowsmann, R.O., Costa, M.P.d.A., 1979. Sedimentação quaternária da Margem Continental Brasileira e das áreas oceânicas adjacentes. In: Projeto REMAC: Reconhecimento Global da Margem Continental brasileira. Vol. 8. Petrobrás, Centro de Pesquisas e Desenvolvimento, Divisão de Informação Técnica e Propriedade Industrial, Rio de Janeiro, Brazil, pp. 1–55.Google Scholar
Lancaster, N., Kocurek, G., Singhvi, A., Pandey, V., Deynoux, M., Ghienne, J.-F., , K., 2002. Late Pleistocene and Holocene dune activity and wind regimes in the western Sahara Desert of Mauritania. Geology 30, 991994.2.0.CO;2>CrossRefGoogle Scholar
Lea, D.W., Pak, D.K., Peterson, L.C., Hughen, K.A., 2003. Synchroneity of tropical and high-latitude Atlantic temperatures over the last glacial termination. Science 301, 13611364.Google Scholar
Ledru, M.P., Mourguiart, P., Ceccantini, G., Turcq, B., Sifeddine, A., 2002. Tropical climates in the game of two hemispheres revealed by abrupt climatic changes. Geology 30, 275278.2.0.CO;2>CrossRefGoogle Scholar
Lees, B., 2006. Timing and formation of coastal dunes in northern and eastern Australia. Journal of Coastal Research 22, 7889.CrossRefGoogle Scholar
Mason, J.S., Lu, H., Zhou, Y., Miao, X., Swinehart, J.B., Liu, Z., Goble, R.J., Yi, S., 2009. Dune mobility and aridity at the desert margin of northern China at a time of peak monsoon strength. Geology 37, 947950.Google Scholar
Mulitza, S., Chiessi, C.M., Schefuß, E., Lippold, J., Wichmann, D., Antz, B., Mackensen, A., et al., 2017. Synchronous and proportional deglacial changes in Atlantic meridional overturning and northeast Brazilian precipitation. Paleoceanography 32, 622633.Google Scholar
Munyikwa, K., 2005. Synchrony of Southern Hemisphere Late Pleistocene arid episodes: a review of luminescence chronologies from arid aeolian landscapes south of the equator. Quaternary Science Reviews 24, 25552583.Google Scholar
Murray, A., Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.Google Scholar
Nimer, E., 1989. Climatologia do Brasil. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro, Brazil.Google Scholar
North Greenland Ice Core Project members. 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147151.Google Scholar
Pianca, C., Mazzini, P.L., Siegle, E., 2010. Brazilian offshore wave climate based on NWW3 reanalysis. Brazilian Journal of Oceanography 58, 5370.Google Scholar
Prescott, J.R., Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 497500.CrossRefGoogle Scholar
Rabineau, M., Berná, S., Olivet, J.L., Aslanian, D., Guillocheau, F., Joseph, P., 2006. Paleo sea levels reconsidered from direct observation of paleoshoreline position during glacial maxima (for the last 500,000 yr). Earth and Planetary Science Letters 252, 119137.Google Scholar
Rossetti, D.F., 2004. Paleosurfaces from northeastern Amazonia as a key for reconstructing paleolandscapes and understanding weathering products. Sedimentary Geology 169, 151174.Google Scholar
Schobbenhaus, C., Bellizia, A., 2001. Mapa Geológico da América do Sul, 1:5.000.000. CGMW-CPRM-DNPM-UNESCO, Brasília, Brazil.Google Scholar
Seltzer, G., Rodbell, D., Burns, S.J., 2000. Isotopic evidence for Late Quaternary climate change in tropical South America. Geology 28, 3538.Google Scholar
Sifeddine, A., Alburquerque, A.L.S., Ledru, M.P., Turcq, B., Knoppers, B., Martin, L., Mello, W.Z., et al., 2003. A 21 000 cal years paleoclimatic record from Caçó Lake, northern Brazil: evidence from sedimentary and pollen analyses. Palaeogeography, Palaeoclimatology, Palaeoecology 189, 2534.Google Scholar
Singhvi, A., Porat, N., 2008. Impact of luminescence dating on geomophological and paleoclimate research in drylands. Boreas 37, 536558.Google Scholar
Stager, J.C., Ryves, D.B., Chase, B.M., Pausata, F.S.R., 2011. Catastrophic drought in the Afro-Asian monsoon region during Heinrich event 1. Science 331, 12991302.Google Scholar
Tripaldi, A., Zárate, M.A., 2016. A review of Late Quaternary inland dune systems of South America east of the Andes. Quaternary International 410, 96110.Google Scholar
Tsoar., H., 2005. Sand dunes mobility and stability in relation to climate. Physica A: Statistical Mechanics and Its Applications 357, 5056.Google Scholar
Tsoar, H., Levin, N., Porat, N., Maia, L.P., Herrmann, H.J., Tatumi, S.H., Claudino-Sales, V., 2009. The effect of climate change on the mobility and stability of coastal sand dunes in Ceará State (NE Brazil). Quaternary Research 71, 217226.Google Scholar
Vasconcelos, A.M., Veiga, J. Jr., Colares, J.Q.S., Ribeiro, J.A.P., Gomes, I.P., Medeiros, M.F., Forgiarini, L.L., 2004. Folha SA.23-São Luís. In: Schobbenhaus, C., Gonçalves, J.H., Santos, J.O.S., Abram, M.B., Leão Neto, R., Matos, G.M.M., Vidotti, R.M., Ramos, M.A.B., Jesus, J.D.A. (Eds.), Carta Geológica do Brasil ao Milionésimo, Sistema de Informações Geográficas. Serviço Geológico de Brasil (CPRM), Brasília, Brazil, CD-ROM.Google Scholar
Weldeab, S., Schneider, R.R., Kolling, M., 2006. Deglacial sea surface temperature and salinity increase in the western tropical Atlantic in synchrony with high latitude climate instabilities. Earth and Planetary Science Letters 241, 699706.CrossRefGoogle Scholar
Wintle, A.G., Murray, A.S., 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41, 369391.Google Scholar
Xu, Z., Lu, H., Yi, S., Vandenberghe, J., Mason, J.A., Zhou, Y., Wang, X., 2015. Climate-driven changes to dune activity during the Last Glacial Maximum and deglaciation in the Mu Us dune field, north-central China. Earth and Planetary Science Letters 427, 149159.Google Scholar
Yizhaq, H., Ashkenazy, Y., Tsoar, H., 2009. Sand dune dynamics and climate change: a modeling approach. Journal of Geophysical Research: Earth Surface 114, F01023. http://dx.doi.org/10.1029/2008JF001138.Google Scholar
Zhang, Y., Chiesse, C.M., Mulitza, S., Zabel, M., Trindade, R.I.F., Hollanda, M.H.B.M., Dantas, E.L., Govin, A., Tiedemann, R., Wefer, G., 2015. Origin of increased terrigenous supply to the NE South American continental margin during Heinrich Stadial 1 and the Younger Dryas. Earth and Planetary Science Letters 432, 493500.Google Scholar
Supplementary material: File

Conforti Ferreira Guedes et al supplementary material

Conforti Ferreira Guedes et al supplementary material 1

Download Conforti Ferreira Guedes et al supplementary material(File)
File 6.1 MB
Supplementary material: File

Conforti Ferreira Guedes et al supplementary material

Conforti Ferreira Guedes et al supplementary material 2

Download Conforti Ferreira Guedes et al supplementary material(File)
File 183 KB
Supplementary material: File

Conforti Ferreira Guedes et al supplementary material

Conforti Ferreira Guedes et al supplementary material 3

Download Conforti Ferreira Guedes et al supplementary material(File)
File 423.9 KB
Supplementary material: File

Conforti Ferreira Guedes et al supplementary material

Conforti Ferreira Guedes et al supplementary material 4

Download Conforti Ferreira Guedes et al supplementary material(File)
File 84 KB