Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-23T10:43:19.139Z Has data issue: false hasContentIssue false

The Volchia Griva mineral oasis as unique locus for research of the mammoth fauna and the late Pleistocene environment in Northern Eurasia

Published online by Cambridge University Press:  19 April 2022

Sergey V. Leshchinskiy*
Affiliation:
Laboratory of Mesozoic and Cenozoic Continental Ecosystems, Tomsk State University, Lenin Ave. 36, Tomsk 634050, Russia. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Koptyug Avenue 3, Novosibirsk, 630090, Russia.
Elena M. Burkanova
Affiliation:
Laboratory of Mesozoic and Cenozoic Continental Ecosystems, Tomsk State University, Lenin Ave. 36, Tomsk 634050, Russia. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Koptyug Avenue 3, Novosibirsk, 630090, Russia.
*
*Corresponding author e-mail addresses: sl@ggf.tsu.ru, mammothfauna@gmail.com

Abstract

This paper describes the results of research at Volchia Griva, the largest site in Asia containing mammoth fauna in situ. It is situated in the south of the West Siberian Plain in the Baraba forest-steppe zone, and occupies an area of several hectares. Analysis of sediments and taphonomy of the site allows us to suggest that thousands of megafaunal remains were buried here in mud pits and erosional depressions. The favorable geochemical landscape of Volchia Griva attracted animals during periods of mineral starvation. This is reflected in the high mortality in two intervals, ca. 20–18 14C ka BP and ca. 17–11 14C ka BP. The results of palynological analysis of samples from the upper part of the Volchia Griva section made it possible to reconstruct the history of landscape changes of the Baraba Lowland during the MIS 2. Forb-mesophytic meadows were common at the beginning of this period, with taiga type forests. At ca. 20 14C ka BP, an abrupt and significant aridization of the climate occurred, which led to the degradation of forests. The mammoth steppe was widely developed, dominated by forb-grass association and with areas of alkali meadows and soils. Such conditions existed probably until the mid-Holocene.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agatova, A.R., Nepop, R.K., Carling, P.A., Bohorquez, P., Khazin, L.B., Zhdanova, A.N., Moska, P., 2020. Last ice-dammed lake in the Kuray basin, Russian Altai: new results from multidisciplinary research. Earth-Science Reviews 205, 103183. https://doi.org/10.1016/j.earscirev.2020.103183.CrossRefGoogle Scholar
Alexeeva, E.V., Vereshchagin, N.K., 1970. Mammoth hunters in the Baraba steppe. Priroda 1, 7174. [in Russian]Google Scholar
Ambrose, S.H., 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17, 431451.CrossRefGoogle Scholar
Arhiv klimaticheskih dannyh, 2012. http://climatebase.ru/ (accessed 10 June 2020).Google Scholar
Arkhipov, S.A., Volkova, V.S., 1994. Geological History, Pleistocene Landscapes and Climate in West Siberia. NIC OIGGM SO RAN, Novosibirsk. [in Russian]Google Scholar
Babin, G.A., Chernykh, A.I., Golovina, A.G., Zhigalov, S.V., Dolgushin, S.S., Vetrov, E.V., Korableva, T.V., et al. , 2015. Gosudarstvennaya geologicheskaya karta Rossiyskoy Federacii. Masshtab 1:1000000 (tretye pookoleniye). Seriya Altaye-Sayanskaya. List N-44–Novosibirsk. Kartograficheskaya fabrika VSEGEI, St. Petersburg. [in Russian]Google Scholar
Baryshnikov, G.F., Kuzmina, I.T., Hrabrii, V.M., 1977. Rezultaty izmerenii trubchatyh kostey mamontov Berelyokhskogo “kladbishcha”. In: Starobogatov, Ja.I. (Ed.), Mamontovaya fauna Russkoy ravniny i Vostochnoy Sibiri. Proceedings of the Zoological Institute 72, Academy of Sciences of the USSR, Leningrad, pp. 5867. [in Russian]Google Scholar
Behrensmeyer, A.K., 1978. Taphonomic and ecologic information from bone weathering. Paleobiology 4, 150162.CrossRefGoogle Scholar
Binney, H., Edwards, M., Macias-Fauria, M., Lozhkin, A., Anderson, P., Kaplan, J.O., Andreev, A., et al. , 2017. Vegetation of Eurasia from the last glacial maximum to present: key biogeographic patterns. Quaternary Science Reviews 157, 8097.CrossRefGoogle Scholar
Bocherens, H., 2015. Isotopic tracking of large carnivore palaeoecology in the mammoth steppe. Quaternary Science Reviews 117, 4271.CrossRefGoogle Scholar
Bocherens, H., Drucker, D., 2003. Trophic level isotopic enrichment of carbon and nitrogen in bone collagen: case studies from recent and ancient terrestrial ecosystems. International Journal of Osteoarchaeology 13, 4653.CrossRefGoogle Scholar
Bocherens, H., Pacaud, G., Lazarev, P., Mariotti, A., 1996. Stable isotope abundances (13C, 15N) in collagen and soft tissues from Pleistocene mammals from Yakutia. Implications for the paleobiology of the mammoth steppe. Palaeogeography, Palaeoclimatology, Palaeoecology 126, 3144.CrossRefGoogle Scholar
Braun, I.M., Palombo, M.R., 2012. Mammuthus primigenius in the cave and portable art: an overview with a short account on the elephant fossil record in Southern Europe during the last glacial. Quaternary International 276–277, 6176.Google Scholar
Bukreyeva, G.F., Poleshchuk, V.P., 1970. Baraba steppe. In: Saks, V.N. (Ed.), History of the Evolution of the Vegetation of the Extraglacial Region in Late Pliocene and Quaternary Time. Transaction of the Institute of Geology and Geophysics 92, Siberian Branch of Academy of Sciences of the USSR, Moscow, pp. 128164. [in Russian]Google Scholar
Chepurov, K.P., Cherkasova, A.V., Akulov, N.M., Ostrovskiy, I.I., Martynyuk, D.F., 1955. Urovskaya Bolezn. Amurskoe knizhnoe izdatelstvo, Blagoveshchensk. [in Russian]Google Scholar
Chlachula, J., Serikov, Yu.B., 2010. Last glacial ecology and geoarchaeology of the Central Trans-Ural area: the Sosva River Upper Palaeolithic Complex, western Siberia. Boreas 40, 146160.CrossRefGoogle Scholar
Christiansen, P. 2004. Body size in proboscideans, with notes on elephant metabolism. Zoological Journal of the Linnean Society 140, 523549.CrossRefGoogle Scholar
Clarke, E.A., Goodship, A.E., 2010. A severely disabled mammoth—the palaeopathological evidence. Quaternary International 228, 210216.CrossRefGoogle Scholar
Cooper, W., 1831. Notices of big-bone lick. The Monthly American Journal of Geology and Natural Science 1, 158–174, 205217.Google Scholar
Dehasque, M., Pečnerová, P., Muller, H., Tikhonov, A., Nikolskiy, P., Tsigankova, V.I., Danilov, G.K., et al. , 2021. Combining Bayesian age models and genetics to investigate population dynamics and extinction of the last mammoths in northern Siberia. Quaternary Science Reviews 259, 106913. https://doi.org/10.1016/j.quascirev.2021.106913.CrossRefGoogle Scholar
Derevianko, A.P., Zenin, V.N., Leshchinskiy, S.V., Mashchenko, E.N., 2000. Peculiarities of mammoth accumulation at Shestakovo site in West Siberia. Archaeology, Ethnology & Anthropology of Eurasia 3, 4255.Google Scholar
Drucker, D., Vercoutère, C., Chiotti, L., Nespoulet, R., Crépin, L., Conard, N.J., Münzel, S.C., et al. , 2015. Tracking possible decline of woolly mammoth during the Gravettian in Dordogne (France) and the Ach Valley (Germany) using multi-isotope tracking (13C, 14C, 15N, 34S, 18O). Quaternary International 359–360, 304317.CrossRefGoogle Scholar
Drucker, D., Naito, Y.I., Péan, S., Prat, S., Crépin, L., Chikaraishi, Y., Ohkouchi, N., et al. , 2017. Isotopic analyses suggest mammoth and plant in the diet of the oldest anatomically modern humans from far southeast Europe. Scientific Reports 7, 6833. https://doi.org/10.1038/s41598-017-07065-3.CrossRefGoogle Scholar
Drucker, D.G., Stevens, R.E., Germonpré, M., Sablin, M.V., Péan, S., Bocherens, H., 2018. Collagen stable isotopes provide insights into the end of the mammoth steppe in the central East European plains during the Epigravettian. Quaternary Research 90, 457469.CrossRefGoogle Scholar
El Adli, J.J., Fisher, D.C., Vartanyan, S.L., Tikhonov, A.N., 2017. Final years of life and seasons of death of woolly mammoths from Wrangel Island and mainland Chukotka, Russian Federation. Quaternary International 445, 135145.CrossRefGoogle Scholar
Fisher, D.C., Shirley, E.A., Whalen, C.D., Calamari, Z.T., Rountrey, A.N., Tikhonov, A.N., Buigues, B., Lacombat, F., Grigoriev, S., Lazarev, P.A., 2014. X-ray computed tomography of two mammoth calf mummies. Journal of Paleontology 88, 664675.CrossRefGoogle Scholar
Flueck, W.T., Smith-Flueck, J.A.M., 2008. Age-independent osteopathology in skeletons of a South American cervid, the Patagonian huemul (Hippocamelus bisulcus). Journal of Wildlife Diseases 44, 636648.CrossRefGoogle Scholar
Fox-Dobbs, K., Leonard, J.A., Koch, P.L., 2008. Pleistocene megafauna from eastern Beringia: paleoecological and paleoenvironmental interpretations of stable carbon and nitrogen isotope and radiocarbon records. Palaeogeography, Palaeoclimatology, Palaeoecology 261, 3046.Google Scholar
Grichuk, V.P., 2002. Rastitelnost pozdnego pleistocena. In: Velichko, A.A. (Ed.), Dinamika Landshaftnyh Komponentov i Vnutrennih Morskih Bassieynov Severnoy Evrazii za Poslednie 130000 let. GEOS, Moskva, pp. 6489. [in Russian]Google Scholar
Grosswald, M.G., 1999. Cataclysmic Megafloods in Eurasia and the Polar Ice Sheets. Scientific World, Moscow. [in Russian]Google Scholar
Guiry, E.J., Szpak, P., 2021. Improved quality control criteria for stable carbon and nitrogen isotope measurements of ancient bone collagen. Journal of Archaeological Science 132, 105416. https://doi.org/10.1016/j.jas.2021.105416.CrossRefGoogle Scholar
Guthrie, R.D., 2004. Radiocarbon evidence of mid-Holocene mammoths stranded on an Alaskan Bering Sea island. Nature 429, 746749.CrossRefGoogle Scholar
Haynes, G., 1991. Mammoths, Mastodonts, and Elephants: Biology, Behaviour and the Fossil Record. Cambridge University Press, New York.Google Scholar
Haynes, G., 1999. The role of mammoths in rapid Clovis dispersal. Deinsea 6, 938.Google Scholar
Haynes, G. 2012. Elephants (and extinct relatives) as earth-movers and ecosystem engineers. Geomorphology 157–158, 99107.CrossRefGoogle Scholar
Haynes, G., Klimowicz, J., 2015. A preliminary review of bone and teeth abnormalities seen in recent Loxodonta and extinct Mammuthus and Mammut, and suggested implications. Quaternary International 379, 135146.CrossRefGoogle Scholar
Herget, J., Agatova, A.R., Carling, P.A., Nepop, R.K., 2020. Altai megafloods—the temporal context. Earth-Science Reviews 200, 102995. https://doi.org/10.1016/j.earscirev.2019.102995.CrossRefGoogle Scholar
Holdø, R.M., Dudley, J.P., McDowell, L.R., 2002. Geophagy in the African elephant in relation to availability of dietary sodium. Journal of Mammalogy 83, 652664.2.0.CO;2>CrossRefGoogle Scholar
Johnson, H.E., Bleich, V.C., Krausman, P.R., 2007. Mineral deficiencies in tule elk, Owens Valley, California. Journal of Wildlife Diseases 43, 6174.CrossRefGoogle ScholarPubMed
Jürgensen, J., Drucker, D.G., Stuart, A.J., Schneider, M., Buuveibaatar, B., Bocherens, H., 2017. Diet and habitat of the saiga antelope during the late Quaternary using stable carbon and nitrogen isotope ratios. Quaternary Science Reviews 160, 150161.CrossRefGoogle Scholar
Kahlke, R.-D., 1999. The History of the Origin, Evolution and Dispersal of the Late Pleistocene Mammuthus-Coelodonta Faunal Complex in Eurasia (Large Mammals). Mammoth Site of Hot Springs, SD. Inc., Rapid City, South Dakota.Google Scholar
Komatsu, G., Baker, V.R., Arzhannikov, S.G., Gallagher, R., Arzhannikova, A.V., Murana, A., Oguchi, T., 2016. Catastrophic flooding, palaeolakes, and late Quaternary drainage reorganization in northern Eurasia. International Geology Review 58, 16931722.CrossRefGoogle Scholar
Kovalskiy, V.V., 1974. Geokhimicheskaya Ekologiya. Nauka, Moskwa. [in Russian]Google Scholar
Krivonogov, S.K., Gusev, V.A., Parkhomchuk, E.V., Zhilich, S.V., 2018. Intermediate lakes of the Chulym and Kargat river valleys and their role in the evolution of the Lake Chany basin. Russian Geology and Geophysics 59, 541555.CrossRefGoogle Scholar
Krzemińska, A., 2014. Abnormalities and Other Changes on Woolly Mammoth Bones from Central Europe 32,000 to 20,000 Years Ago—A Monograph. Faunistic Monographs 27. Instytut Systematyki i Ewolucji Zwierząt, Polska Akademia Nauk, Kraków.Google Scholar
Krzemińska, A., Wędzicha, S., 2015. Pathological changes on the ribs of woolly mammoths (Mammuthus primigenius). Quaternary International 359–360, 186194.CrossRefGoogle Scholar
Krzemińska, A., Wojtal, P., Oliva, M., 2015. Pathological changes on woolly mammoth (Mammuthus primigenius) bones: holes, hollows and other minor changes in the spinous processes of vertebrae. Quaternary International 359–360, 178185.CrossRefGoogle Scholar
Kuitems, M., van Kolfschoten, T., Tikhonov, A.N., van der Plicht, J., 2019. Woolly mammoth δ13C and δ15N values remained amazingly stable throughout the last ~50,000 years in north-eastern Siberia. Quaternary International 500, 120127.Google Scholar
Kuzmin, Y.V., 2010. Extinction of the woolly mammoth (Mammuthus primigenius) and woolly rhinoceros (Coelodonta antiquitatis) in Eurasia: review of chronological and environmental issues. Boreas 39, 247261.CrossRefGoogle Scholar
Kuzmin, Y.V., Bondarev, A.A., Kosintsev, P.A., Zazovskaya, E.P., 2021. The Paleolithic diet of Siberia and Eastern Europe: evidence based on stable isotopes (δ13C and δ15N) in hominin and animal bone collagen. Archaeological and Anthropological Sciences 13, 179. https://doi.org/10.1007/s12520-021-01439-5.Google Scholar
Kuzmina, I.E., Maschenko, E.N., 1999. Age morphological changes in the skull and skeleton of mammoth calves of the Russia Plane. In: Kuzmina, I.E. (Ed.), Mammoth Calves Mammuthus primigenius (Blumenbach, 1799). Chapter 3, Proceedings of the Zoological Institute 275, Russian Academy of Sciences, St. Petersburg, pp. 51120. [in Russian]Google Scholar
Lang, E.M., 1980. Observations on growth and molar change in the African elephant. African Journal of Ecology 18, 217234.CrossRefGoogle Scholar
Larramendi, A. 2016. Shoulder height, body mass, and shape of proboscideans. Acta Palaeontologica Polonica 61, 537574.Google Scholar
Laws, R.M., 1966. Age criteria for the African elephant, Loxodonta a. africana. East African Wildlife Journal 4, 137.CrossRefGoogle Scholar
Lee, Ph.C., Sayialel, S., Lindsay, W.K., Moss, C.J., 2012. African elephant age determination from teeth: validation from known individuals. African Journal of Ecology 50, 920.CrossRefGoogle Scholar
Leshchinskiy, S.V., 2001. Late Pleistocene beast solonetz of Western Siberia: «mineral oases» in mammoth migration paths, foci of the Palaeolithic man's activity. In: Cavarretta, G., Gioia, P., Mussi, M., Palombo, M.R. (Eds), The World of Elephants. Proceedings of the 1st International Congress, October 16–20. CNR, Rome, pp. 293298.Google Scholar
Leshchinskiy, S.V., 2006. Lugovskoye: environment, taphonomy, and origin of a paleofaunal site. Archaeology, Ethnology & Anthropology of Eurasia 25, 3340.CrossRefGoogle Scholar
Leshchinskiy, S.V., 2009. Mineral deficiency, enzootic diseases and extinction of mammoth of Northern Eurasia. Doklady Biological Sciences 424, 7274.CrossRefGoogle ScholarPubMed
Leshchinskiy, S.V., 2012. Paleoecological investigation of mammoth remains from the Kraków Spadzista Street (B) site. Quaternary International 276–277, 155169.Google Scholar
Leshchinskiy, S., 2015. Enzootic diseases and extinction of mammoths as a reflection of deep geochemical changes in ecosystems of Northern Eurasia. Archaeological and Anthropological Sciences 7, 297317.CrossRefGoogle Scholar
Leshchinskiy, S.V., 2017. Strong evidence for dietary mineral imbalance as the cause of osteodystrophy in Late Glacial woolly mammoths at the Berelyokh site (Northern Yakutia, Russia). Quaternary International 445, 146170.Google Scholar
Leshchinskiy, S.V., Maschenko, E.N., Ponomareva, E.A., Orlova, L.A., Burkanova, E.M., Konovalova, V.A., Teterina, I.I., Gevlya, K.M., 2006. Multidisciplinary paleontological and stratigraphic studies at Lugovskoe (2002–2004). Archaeology, Ethnology & Anthropology of Eurasia 25, 5469.CrossRefGoogle Scholar
Leshchinskiy, S.V., Kuzmin, Y.V., Zenin, V.N., Jull, A.J.T., 2008. Radiocarbon chronology of the “Mammoth Cemetery” and Paleolithic site of Volchia Griva (Western Siberia). Current Research in the Pleistocene 25, 5356.Google Scholar
Leshchinskiy, S.V., Zenin, V.N., Burkanova, E.M., Dudko, A.A., Gulina, A.V., Fedyaev, N.Ya., Semiryakov, A.S., Kanishcheva, E.V., 2015. Multidisciplinary studies of the Baraba mammoth refugium in 2015. Tomsk State University Journal 400, 354365. [in Russian]CrossRefGoogle Scholar
Leshchinskiy, S.V., Kuzmin, Y.V., Boudin, M., Amon, L., 2021a. Holes in the spinous processes of woolly mammoth vertebrae: spatial and temporal distribution, and the causes of pathology formation. Journal of Quaternary Science 36, 12541267.CrossRefGoogle Scholar
Leshchinskiy, S.V., Zenin, V.N., Bukharova, O.V., 2021b. The Volchia Griva mammoth site as a key area for geoarchaeological research of human movements in the Late Paleolithic of the West Siberian Plain. Quaternary International 587–588, 368383.CrossRefGoogle Scholar
Levina, T.P., Orlova, L.A., 1993. Holocene climatic rhythms of southern West Siberia. Geologiya i Geofizika 34, 3651. [in Russian]Google Scholar
Liss, O.L., Abramova, L.I., Avetov, N.A., Berezina, N.A., Inisheva, L.I., Kurnushkova, T.V., Sluka, Z.A., Tolpysheva, T.Yu., Shvedchikova, N.K., 2001. Bolotnye Sistemy Zapadnoy Sibiri i ih Prirodoohrannoe Znachenie. Izdatelstvo Grif i K, Tula.Google Scholar
Lister, A.M., 1999. Epiphyseal fusion and postcranial age determination in the woolly mammoth Mammuthus primigenius. Deinsea 6, 7987.Google Scholar
Logginov, A., 1890. K voprosu ob osteoporoze, kak samostoyatelnoi bolezni u loshadei. Veterinary Dissertation. Tipografiya G. Lakmana, Derpt. [in Russian]Google Scholar
Mangerud, J., Jakobsson, M., Alexanderson, H., Astakhov, V., Clarke, G.K.C., Henriksen, M., Hjort, C., et al. , 2004. Ice-dammed lakes and rerouting of the drainage of northern Eurasia during the Last Glaciation. Quaternary Science Reviews 23, 13131332.Google Scholar
Maschenko, E.N., 2002. Individual development, biology and evolution of the woolly mammoth. Cranium 19, 4120.Google Scholar
Mashchenko, E.N., Leshchinskiy, S.V., 2001. Composition and morphology of mammoth remains from the Volchia Griva site. In: Podobina, V.M. (Ed.), Evolution of Life on the Earth: Proceedings of the II International Symposium. Tomsk State University, Tomsk, pp. 507511. [in Russian]Google Scholar
Mwangi, P.N., Milewski, A., Wahungu, G.M., 2004. Chemical composition of mineral licks used by elephants in Aber-dares National Park, Kenya. Pachyderm 37, 5967.Google Scholar
Nadachowski, A., Lipecki, G., Wojtal, P., Miękina, B., 2011. Radiocarbon chronology of woolly mammoth (Mammuthus primigenius) from Poland. Quaternary International 245, 186192.CrossRefGoogle Scholar
Nadachowski, A., Lipecki, G., Baca, M., Żmihorski, M., Wilczyński, J., 2018. Impact of climate and humans on the range dynamics of the woolly mammoth (Mammuthus primigenius) in Europe during MIS 2. Quaternary Research 90, 439456.CrossRefGoogle Scholar
Okladnikov, A.P., Grigorenko, B.G., Alexeeva, E.V., Volkov, I.A. 1971. Stoyanka verhnepaleoliticheskogo cheloveka Volchia Griva (raskopki 1968 goda). Materialy polevyh issledovaniy Dal'nevostochnoi arheologicheskoy ekspedicii 2. NII IFF SO AN SSSR, Novosibirsk, pp. 87131. [in Russian]Google Scholar
Orlova, L.A., 1990. Golocen Baraby (Stratigrafiya i Radiouglerodnaya Chronologiya). Nauka, Sibirskoe Otdelenie, Novosibirsk. [in Russian]Google Scholar
Perelman, A.I., 1975. Geohimiya Landshafta. Vysshaya Shkola, Moskva. [in Russian]Google Scholar
Petrov, B.F., 1948. Proishozhdenie rel'efa Baraby. Bulleten’ komissii po izucheniyu chetvertichnogo perioda 12, 9397. [in Russian]Google Scholar
Pogoda i klimat, 2020. Spravochno-informacionnyi portal. http://www.pogodaiklimat.ru/ (accessed 10 June 2020).Google Scholar
Polunin, G.V., 1961. O krupnom zahoronenii mamontov v Barabinskoy stepi. Trudy SNIIGGiMS 14, 4648. [in Russian]Google Scholar
Puzachenko, A.Yu., Markova, A.K., Kosintsev, P.A., van Kolfschoten, T., van der Plicht, J., Kuznetsova, T.V., Tikhonov, A.N., Ponomarev, D.V., Kuitems, M., Bachura, O.P., 2017. The Eurasian mammoth distribution during the second half of the Late Pleistocene and the Holocene: regional aspects. Quaternary International 445, 7188.CrossRefGoogle Scholar
Rabanus-Wallace, M.T., Wooller, M.J., Zazula, G.D., Shute, E., Jahren, A.H., Kosintsev, P., Burns, J.A., Breen, J., Llamas, B., Cooper, A., 2017. Megafaunal isotopes reveal role of increased moisture on rangeland during late Pleistocene extinctions. Nature Ecology & Evolution 1, 0125. https://doi.org/10.1038/s41559-017-0125.CrossRefGoogle ScholarPubMed
Reineck, H.-E., Singh, I.B., 1975. Depositional Sedimentary Environments (with reference to terrigenous clastics). Corrected reprint of the first ed. Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
Roth, V.L., Shoshani, J., 1988. Dental identification and age determination in Elephas maximus. Journal of the Zoological Society of London 214, 567588.CrossRefGoogle Scholar
Rothschild, B.M., Laub, R., 2006. Hyperdisease in the Late Pleistocene: validation of an early 20th century hypothesis. Naturwissenschaften 93, 557564.CrossRefGoogle ScholarPubMed
Rothschild, B.M., Laub, R., 2008. Pedal stress fractures in mastodons. Journal of Paleopathology 20, 4351.Google Scholar
Rothschild, B.M., Martin, L.D., 2003. Frequency of pathology in a large natural sample from Natural Trap Cave with special remarks on erosive disease in the Pleistocene. Reumatismo 55, 5865.Google Scholar
Rothschild, B.M., Wang, X., Shoshani, J., 1994. Spondyloarthropathy in Proboscideans. Journal of Zoo and Wildlife Medicine 25, 360366.Google Scholar
Rountrey, A.N., Fisher, D.C., Tikhonov, A.N., Kosintsev, P.A., Lazarev, P.A., Boeskorov, G., Buigues, B., 2012. Early tooth development, gestation, and season of birth in mammoths. Quaternary International 255, 196205.CrossRefGoogle Scholar
Seuru, S., Leshchinskiy, S., Auguste, P., Fedyaev, N., 2017. Woolly mammoth and man at Krasnoyarskaya Kurya site, West Siberian plain, Russia (excavation results of 2014). Bulletin de la Societe Geologique de France 188, 113.CrossRefGoogle Scholar
Shpansky, A.V., 2014. Variations of the tooth morphology of the woolly mammoth Mammuthus primigenius (Blumenbach, 1799) (Mammalia: Elephanthidae). Proceedings of the Zoological Institute RAS 318, 2433. [in Russian]CrossRefGoogle Scholar
Shrock, R.R., 1948. Sequence in Layered Rocks. First ed. (second impression). McGraw-Hill, New York, Toronto, London.Google Scholar
Shvartsev, S.L., 1992. O sootnoshenii sostavov podzemnyh vod i gornyh porod. Geologia i Geofizika 8, 4655. [in Russian]Google Scholar
Shvartsev, S.L., 1998. Gidrogeohimiya Zony Gipergeneza. Nedra, Moskva. [in Russian]Google Scholar
Stuart, A.J., Sulerzhitsky, L.D., Orlova, L.A., Kuzmin, Y.V., Lister, A.M., 2002. The latest woolly mammoths (Mammuthus primigenius Blumenbach) in Europe and Asia: a review of the current evidence. Quaternary Science Reviews 21, 15591569.Google Scholar
Stuart, A.J., Kosintsev, P.A., Higham, T.F.G., Lister, A.M., 2004. Pleistocene to Holocene extinction dynamics in giant deer and wooly mammoth. Nature 431, 684689.CrossRefGoogle Scholar
Sulerzhitsky, L.D., Romanenko, F.A., 1997. Age and distribution of the “mammoth” fauna of the polar region of Asia (radiocarbon dating results). Earth Cryosphere 1, 1219. [in Russian]Google Scholar
Szpak, P., Gröcke, D.R., Debruyne, R., MacPhee, R.D.E., Guthrie, R.D., Froese, D., Zazula, G.D., Patterson, W.P., Poinar, H.N., 2010. Regional differences in bone collagen δ13C and δ15N of Pleistocene mammoths: implications for paleoecology of the mammoth steppe. Palaeogeography, Palaeoclimatology, Palaeoecology 286, 8896.CrossRefGoogle Scholar
Tarasov, P.E., 2000. Rekonstrukciya climata i rastitelnosti Severnoy Evrazii pozdnego pleistocena po palinilogicheskim dannym. In: Kaplin, P.A., Sudakova, N.G. (Eds.), Problemy Paleogeografii i Stratigrafii Pleistocena. Izdatelstvo Moskovskogo Universiteta, Moskva, pp. 7096. [in Russian]Google Scholar
Ukkonen, P., Aaris-Sørensen, K., Arppe, L., Clark, P.U., Daugnora, L., Lister, A.M., Lõugas, L., et al. , 2011. Woolly mammoth (Mammuthus primigenius Blum.) and its environment in northern Europe during the last glaciation. Quaternary Science Reviews 30, 693712.CrossRefGoogle Scholar
van der Plicht, J., Molodin, V.I., Kuzmin, Y.V., Vasiliev, S.K., Postnov, A.V., Slavinsky, V.S., 2015. New Holocene refugia of giant deer (Megaloceros giganteus Blum.) in Siberia: updated extinction patterns. Quaternary Science Reviews 114, 182188.CrossRefGoogle Scholar
Vartanyan, S.L., Arslanov, Kh.A., Tertychnaya, T.V., Chernov, S.B., 1995. Radiocarbon dating evidence for mammoths on Wrangel Island, Arctic Ocean, until 2000 BC. Radiocarbon 37, 16.CrossRefGoogle Scholar
Velichko, A.A., Timireva, S.N., Kremenetski, K.V., MacDonald, G.M., Smith, L.C., 2011. West Siberian Plain as a late glacial desert. Quaternary International 237, 4553.CrossRefGoogle Scholar
Vereshchagin, N.K., 1977. Berelyokhskoe “kladbishche” mamontov. In: Starobogatov, Ja.I. (Ed), Mamontovaya fauna Russkoy ravniny i Vostochnoy Sibiri. Academy of Sciences of the USSR, Leningrad, Proceedings of the Zoological Institute 72, 5–50. [in Russian]Google Scholar
Vogel, J.S., Southon, J.R., Nelson, D.E., Brown, T.A., 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 5, 289293.CrossRefGoogle Scholar
Volkova, V.S., Mikhailova, I.V., 2001. Environment and climate in the Last (Sartan) Glaciation in West Siberia (according to palynological evidence). Geologiya i Geofizika 42, 678689. [in Russian]Google Scholar
Walker, D.A., Bockheim, J.G., Chapin, F.S., III, Eugster, W., Nelson, F.E., Ping, C.L., 2001. Calcium-rich tundra, wildlife, and the “Mammoth Steppe”. Quaternary Science Reviews 20, 149163.CrossRefGoogle Scholar
Wißing, C., Rougier, H., Baumann, C., Comeyne, A., Crevecoeur, I., Drucker, D.G., Gaudzinski-Windheuser, S., et al. , 2019. Stable isotopes reveal patterns of diet and mobility in the last Neandertals and first modern humans in Europe. Scientific Reports 9, 4433. https://doi.org/10.1038/s41598-019-41033-3.CrossRefGoogle ScholarPubMed
Zaklinskaya, E.D., Panova, L.A. (Eds.), 1986. Metodicheskiye Rekomendacii k Tehnike Obrabotki Osadochnyh Porod pri Sporovo-Pylcevom Analize. Ministerstvo geologii SSSR, VSEGEI, Leningrad. [in Russian]Google Scholar
Zenin, V.N., 2002. Major stages in the human occupation of the West Siberian Plain during the Paleolithic. Archaeology, Ethnology & Anthropology of Eurasia 4, 2244.Google Scholar
Zenin, V.N., Leshchinskiy, S.V., Zolotarev, K.V., Grootes, P.M., Nadeau, M.-J., 2006. Lugovskoe: geoarchaeology and culture of a Paleolithic site. Archaeology, Ethnology & Anthropology of Eurasia 25, 4153.CrossRefGoogle Scholar
Zhylkibaev, K.Zh., 1963. Iskopaemye ostatki slonov v kollekciyah Instituta zoologii AN KazSSR. Materialy po istorii fauny i flory Kazahstana IV, 6676. [in Russian]Google Scholar
Zykin, V.S., Zykina, V.S., 2009. Problems of subdivision and correlation of the Quaternary deposits in the southern West Siberian plain. Bulletin of Commission for study of the Quaternary 69, 7184. [in Russian]Google Scholar
Zykin, V.S., Zykina, V.S., Orlova, L.A., 2002. Novye dannye ob izmenenii prirodnoi sredy i klimata v pozdnem Pleistocene yuga Zapadno-Sibirskoy ravniny po osadkam kotloviny ozera Aksor. In: Vaganov, E.A., Derevianko, A.P., Grachev, M.A., Zykin, V.S., Markin, S.V. (Eds.), Osnovnye Zakonomernosti Globalnyh i Regionalnyh Izmeneniy Klimata i Prirodnoy Sredy v Pozdnem Kaynozoe Sibiri. Izdatelstvo IAE SO RAN, Novosibirsk, pp. 220233. [in Russian]Google Scholar