Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T11:06:52.827Z Has data issue: false hasContentIssue false

U/Th age constraints on the absence of ice in the central Inn Valley (eastern Alps, Austria) during Marine Isotope Stages 5c to 5a

Published online by Cambridge University Press:  20 January 2017

Christoph Spötl*
Affiliation:
Institut für Geologie und Paläontologie, Leopold-Franzens-Universität Innsbruck, Innrain 52, 6020 Innsbruck, Austria
Augusto Mangini
Affiliation:
Forschungsstelle Radiometrie, Heidelberger Akademie der Wissenschaften, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
*
Corresponding author. Fax: +43 512 507 2914. E-mail address:christoph.spoetl@uibk.ac.at (C. Spötl).

Abstract

Calcitic flowstones are present in fractures of a Pleistocene breccia near Innsbruck, Austria, and record periods of carbonate precipitation in the unsaturated zone between 101,500 ± 1500 and 70,300 ± 1800 yr, constrained by U-series disequilibrium dates. The occurrence of these speleothems, their low carbon isotopic composition, and the lack of infiltrated siliciclastic material demonstrate that the central Inn valley – which harbored one of the most extensive valley glaciers during the last glacial maximum – was ice-free during Marine Isotope Stages 5c to 5a. Climatically warm periods are separated by distinct drops in the oxygen isotopic composition of the speleothem calcite, attributed to strong and possibly seasonally biased atmospheric cooling. During these intervening stadials, which mirror those identified in the Greenland ice cores and marine sea-surface temperature records, calcite deposition apparently came to a halt, but the Inn Valley remained ice-free. The youngest calcite layer formed between ∼74,000 and ∼70,000 yr and places a maximum age limit on the likely expansion of alpine glaciers during the Marine Isotope Stage 5/4 transition, consistent with other speleothem records.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ampferer, O. Über die Aufschlieβung der Liegendmoräne unter der Höttinger Brekzie im östlichen Weiherburggraben bei Innsbruck. Zeitschrift für Gletscherkunde 8, (1914). 145159.Google Scholar
Ampferer, O. Höttinger ßreccie und ßafelekar. Götzinger, G. Führer für die Quartär-Exkursionen in Österreich, III. Internationale Quartär-Konferenz, Wien vol. 2, (1936). 5666.Google Scholar
Ampferer, O. Beiträge zur Geologie der Hungerburgterrasse bei Innsbruck. Jahrbuch der Geologischen Bundesanstalt 86, (1936). 353358.Google Scholar
Atkinson, T.C. Growth mechanisms of speleothems in Castleguard Cave, Columbia Icefields, Alberta, Canada. Arctic and Alpine Research 15, (1983). 523536.Google Scholar
Baker, A., Smart, P.L., and Ford, D.C. Northwest European palaeoclimate as indicated by growth frequency variations of secondary calcite deposits. Palaeogeography, Palaeoclimatology, Palaeoecology 100, (1993). 291301.Google Scholar
Baker, A., Smart, P.L., and Edwards, R.L. Paleoclimate implications of mass spectrometric dating of a British flowstone. Geology 23, (1995). 309312.Google Scholar
Baker, A., Smart, P.L., and Edwards, R.L. Mass spectrometric dating of flowstone from Stump Cross Caverns and Lancaster Hole, Yorkshire: palaeoclimatic implications. Journal of Quaternary Science 11, (1996). 107114.Google Scholar
Bond, G.C., Showers, W., Elliot, M., Lotti, R., Hajdas, I., Bonani, G., and Johnson, S. The North Atlantic's 1–2 kyr climate rhythm: relation to Heinrich events, Dansgaard/Oeschger cycles and the Little Ice Age. Clark, P.U., Webb, R.S., and Keigwin, L.D. Mechanisms of Global Climate Change at Millennial Time Scales. Geophysical Monograph Series vol. 112, (1999). American Geophysical Union, Washington, DC. 3558.Google Scholar
Cabioch, G., and Ayliffe, L.K. Raised coral terraces at Malakula, Vanuatu, Southwest Pacific, indicate high sea level during marine isotope stage 3. Quaternary Research 56, (2001). 357365.Google Scholar
Chaline, J., and Jerz, H. Arbeitsergebnisse der Subkommission für Europäische Quartärstratigraphie. Stratotypen des Würm-Glazials. Eiszeitalter und Gegenwart 35, (1984). 185206.Google Scholar
Cheng, H., Edwards, R.L., Hoff, J., Gallup, C.D., Richards, D.A., and Asmerom, Y. The half-lives of uranium-234 and thorium-230. Chemical Geology 169, (2000). 1733.CrossRefGoogle Scholar
Cutler, K.B., Edwards, R.L., Taylor, F.W., Cheng, H., Adkins, J., Gallup, C.D., Cutler, P.M., Burr, G.S., and Bloom, A.L. Rapid sea-level fall and deep-ocean temperature change since the last interglacial period. Earth and Planetary Science Letters 206, (2003). 253271.CrossRefGoogle Scholar
de Beaulieu, J.L., Monjuvent, G., and Nicoud, G. Chronology of the Würmian glaciation in the French Alps: a survey and new hypotheses. Frenzel, B. Klimageschichtliche Probleme der letzten 130000 Jahre. Paläoklimaforschung vol. 1, (1991). Fischer, Stuttgart. 435448.Google Scholar
Drescher-Schneider, R. Die Vegetations- und Klimaentwicklung im Riß/Würm-Interglazial und im Früh- und Mittelwürm in der Umgebung von Mondsee. Ergebnisse der pollenanalytischen Untersuchungen. Mitteilungen der Kommission für Quartärforschung der Österreichischen Akademie der Wissenschaften 12, (2000). 3992.Google Scholar
Fiebig, M., and Preusser, F. Das Alter fluviatiler Ablagerungen aus der Region Ingolstadt (Bayern) und ihre Bedeutung für die Eiszeitchronolgie des Alpenvorlandes. Zeitschrift für Geomorphology 47, (2003). 449467.CrossRefGoogle Scholar
Fliri, F., Bortenschlager, S., Felber, H., Heissel, W., Hilscher, H., and Resch, W. Der Bänderton von Baumkirchen (Inntal, Tirol). Eine neue Schlüsselstelle zur Kenntnis der Würm-Vereisung der Alpen. Zeitschrift für Gletscherkunde und Glazialgeologie 6, (1978). 535.Google Scholar
Frank, N., Braum, M., Hambach, U., Mangini, A., and Wagner, G. Warm period growth of travertine during the last interglaciation in southern Germany. Quaternary Research 54, (2000). 3848.CrossRefGoogle Scholar
Frisia, S., Borsato, A., Spötl, C., Villa, I., and Cucchi, F. Climate variability in the SE Alps of Italy over the past 17000 years reconstructed from a stalagmite record. Boreas 34, (2005). 445455.Google Scholar
Gams, H. Die Flora der Höttinger Breccie. Götzinger, G. Führer für die Quartär-Exkursionen in Österreich, III. International Quartär-Konferenz, Wien 1936 vol. 2, (1936). 6772.Google Scholar
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., and Van-Exter, S. Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data. Nature 421, (2003). 833837.Google Scholar
Grüger, E. Spätriß, Riß/Würm und Frühwürm am Samerberg in Oberbayern–ein vegetationsgeschichtlicher Beitrag zur Gliederung des Jungpleistozäns. Geologica Bavarica 80, (1979). 564.Google Scholar
Hantke, R., (1983). Eiszeitalter. Die jüngste Erdgeschichte der Schweiz und ihrer Nachbargebiete. Vol. 3, . Westliche Ostalpen mit ihrem bayerischen Vorland bis zum Inn-Durchbruch und Südalpen zwischen Dolomiten und Mont Blanc, . Ott, Thun. 730 pp.Google Scholar
Heuberger, H. Innsbrucker Nordkette. Innsbrucker Geographische Studien 2, (1975). 4365.Google Scholar
Holzkämper, S., Spötl, C., and Mangini, A. High-precision constraints on timing of Alpine warm periods during the middle to late Pleistocene using speleothem growth periods. Earth and Planetary Science Letters 206, (2005). 253271.Google Scholar
Ivy-Ochs, S., Schäfer, J., Kubik, P.W., Synal, H.A., and Schlüchter, C. Timing of deglaciation on the northern alpine foreland (Switzerland). Eclogae Geologica Helvetiae 97, (2004). 4755.Google Scholar
Jiménez Sánchez, M., and Arquer, P.F. New radiometric and geomorphologic evidences of a last glacial maximum older than 18 ka in SW European mountains: the example of Redes National Park (Cantabrian Mountains, NW Spain). Geodinamica Acta 15, (2002). 93101.Google Scholar
Jost-Stauffer, M., Coope, G.R., and Schlüchter, C. Environmental and climatic reconstructions during Marine Oxygen Isotope Stage 3 from Gossau, Swiss Midlands, based on coleopteran assemblages. Boreas 34, (2005). 5360.Google Scholar
Klotz, S., Müller, U., Mosbrugger, V., de Beaulieu, J.L., and Reille, M. Eemian and early Würmian climate dynamics: history and pattern of changes in Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 211, (2004). 107126.CrossRefGoogle Scholar
Krenmayr, H.G. Sedimentologie der letzt-interglazialen bis Mittelwürm-zeitlichen Seesedimente bei Mondsee. Mitteilungen der Kommission für Quartärforschung der Österreichischen Akademie der Wissenschaften 12, (2000). 1335.Google Scholar
Linge, H., Lauritzen, S.E., and Lundberg, J. Stable isotope stratigraphy of a late Last Interglacial speleothem from Rana, northern Norway. Quaternary Research 56, (2001). 155164.Google Scholar
Mangerud, J. The last interglacial/glacial cycle in Northern Europe. Shane, L.C.K., and Cushing, E.J. Quaternary Landscapes. (1991). University of Minnesota Press, Minneapolis. 3875.Google Scholar
Mangerud, J. Ice sheet limits in Norway and on the Norwegian continental shelf. Ehlers, J., and Gibbard, P.L. Quaternary Glaciations—Extent and Chronology. Part I: Europe. Developments in Quaternary Science vol. 2, (2004). Elsevier, Amsterdam. 271294.Google Scholar
Mangini, A., Spötl, C., and Verdes, P. Reconstruction of temperature in the Central Alps during the past 2000 years from a δ 18O stalagmite record. Earth and Planetary Science Letters 235, (2005). 741751.CrossRefGoogle Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., and Shackleton, N.J. Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research 27, (1987). 129.Google Scholar
Martrat, B., Grimalt, J.O., Lopez-Martinez, C., Cacho, I., Sierro, F.J., Flores, J.A., Zahn, R., Canals, M., Curtis, J.H., and Hodell, D.A. Abrupt temperature changes in the Western Mediterranean over the past 250,000 years. Science 306, (2004). 17621765.Google Scholar
Müller, U.C., Pross, J., and Bibus, E. Vegetation response to rapid change in central Europe during the past 140,000 yr based on evidence from the Füramoos pollen record. Quaternary Research 59, (2003). 235245.CrossRefGoogle Scholar
North Greenland Ice Core Project Members High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, (2004). 147151.Google Scholar
Penck, A. Die Höttinger Breccie und die Inntalterrasse nördlich Innsbruck. Abhandlungen der Preussischen Akademie der Wissenschaften, Physikalisch-Mathematische Klasse 1920, (1921). 1136.Google Scholar
Penck, A., and Brückner, E. Die Alpen im Eiszeitalter. (1901–1909). Tauchnitz, Leipzig. 1157 pp. Google Scholar
Pichler, A. Zur Geognosie der Tyroler Alpen. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde 1857, (1857). 689695.Google Scholar
Potter, E.-K., Esat, T.M., Schellmann, G., Radtke, U., Lambeck, K., and McCulloch, M.T. Suborbital-period sea-level oscillations during marine isotope substages 5a and 5c. Earth and Planetary Science Letters 225, (2004). 191204.Google Scholar
Preusser, F., Schlüchter, C., (2004). Quartärstratigraphie des Schweizer Mittellandes. Aare- und Emmental. Exkursionsführer Arbeitsgemeinschaft Alpenvorland Quartär (AGAQ), Wasen im Emmental., 30.4.–2.5.2004. 20 pp.Google Scholar
Preusser, F., Geyh, M.A., and Schlüchter, C. Timing of Late Pleistocene climate change in lowland Switzerland. Quaternary Science Reviews 22, (2003). 14351445.CrossRefGoogle Scholar
Seret, G., and Dricot, E. Evidence for an early glacial maximum in the French Vosges during the last glacial cycle. Nature 346, (1990). 453456.Google Scholar
Shackleton, N.J., Fairbanks, R.G., Chiu, T.C., and Parrenin, F. Absolute calibration of the Greenland time scale: implications for Antarctic time scales and for delta14C. Quaternary Science Reviews 23, (2004). 15131522.Google Scholar
Spötl, C., and Vennemann, T. Continuous-flow IRMS analysis of carbonate minerals. Rapid Communications in Mass Spectrometry 17, (2003). 10041006.Google Scholar
Spötl, C., Mangini, A., Frank, N., Eichstädter, R., and Burns, S.J. Start of the last interglacial period at 135 ka: evidence from a high Alpine speleothem. Geology 30, (2002). 815818.Google Scholar
Svendsen, J.I., Alexanderson, H., Astakhov, V.I., Demidov, I., Dowdeswell, J.A., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen, M., Hubberten, H.W., Ingólfsson, O., Jakobsson, M., Kjær, K.H., Larsen, E., Lokrantz, H., Lunkka, J.P., Lyså, A., Mangerud, A., Matiouchkov, A., Murray, A., Möller, P., Niessen, F., Nikolskaya, O., Polyak, L., Saarnisto, M., Siegert, C., Siegert, M.J., Spielhagen, R.F., and Stein, R. Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews 23, (2004). 12291271.Google Scholar
van Husen, D. Geological processes during the Quaternary. Mitteilungen der Österreichischen Geologischen Gesellschaft 92, (2000). 135156.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.C., and Dorale, J.A. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294, (2001). 23452348.CrossRefGoogle ScholarPubMed
Wurth, S., Niggemann, S., Richter, D.K., and Mangini, A. The Younger Dryas and Holocene climate record of a stalagmite from Hölloch Cave (Bavarian Alps, Germany). Journal of Quaternary Science 19, (2004). 291298.Google Scholar