Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-16T09:02:11.969Z Has data issue: false hasContentIssue false

Solar and proxy-sensitivity imprints on paleohydrological records for the last millennium in west-central Europe

Published online by Cambridge University Press:  20 January 2017

M. Magny*
Affiliation:
CNRS-UMR 6249, Laboratoire de Chrono-Environnement, Faculté des Sciences, et Techniques, 16 route de Gray, 25 030 Besançon, France
F. Arnaud
Affiliation:
Environnement Dynamique et Territoires de la Montagne, Université de Savoie, CNRS, Pôle Montagne, Technolac, 73373 Le Bourget du Lac, France
H. Holzhauser
Affiliation:
Ahornstrasse 38, 8051 Zürich, Switzerland
E. Chapron
Affiliation:
Institut des Sciences de la Terre d'Orléans, UMR 6113 CNRS-Université d'Orléans, 1A rue de la Ferollerie, 45071 Orléans cedex O2, France
M. Debret
Affiliation:
Institut des Sciences de la Terre d'Orléans, UMR 6113 CNRS-Université d'Orléans, 1A rue de la Ferollerie, 45071 Orléans cedex O2, France
M. Desmet
Affiliation:
ACCES-INRP, 19 Allée de Fontenay, BP 17424, 69347 Lyon Cedex O7, France
A. Leroux
Affiliation:
CNRS-UMR 6249, Laboratoire de Chrono-Environnement, Faculté des Sciences, et Techniques, 16 route de Gray, 25 030 Besançon, France
L. Millet
Affiliation:
CNRS-UMR 6249, Laboratoire de Chrono-Environnement, Faculté des Sciences, et Techniques, 16 route de Gray, 25 030 Besançon, France
M. Revel
Affiliation:
Geosciences Azur, La Darse BP 48, 06235 Villefranche/Mer, France
B. Vannière
Affiliation:
CNRS-UMR 6249, Laboratoire de Chrono-Environnement, Faculté des Sciences, et Techniques, 16 route de Gray, 25 030 Besançon, France
*
*Corresponding author. Fax: +33 3 81 66 65 68.E-mail addresses:michel.magny@univ-fcomte.fr (M. Magny), fabien.arnaud@univ-savoie.fr (F. Arnaud), h.holzhauser@bluewin.ch (H. Holzhauser), emmanuel.chapron@univ-orleans.fr (E. Chapron), debret@lgge.obs.ujf-grenoble.fr (M. Debret), marc.desmet@inrp.fr (M. Desmet), aurelie.leroux@univ-fcomte.fr (A. Leroux), laurent.millet@univ-fcomte.fr (L. Millet), revel@geoazur.obs-vlfr.fr (M. Revel), boris.vanniere@univ-fcomte.fr (B. Vanni"re).

Abstract

This paper presents a lake-level record established for the last millennium at Lake Saint-Point in the French Jura Mountains. A comparison of this lake-level record with a solar irradiance record supports the hypothesis of a solar forcing of variations in the hydrological cycle linked to climatic oscillations over the last millennium in west-central Europe, with higher lake levels during the solar minimums of Oort (around AD 1060), Wolf (around AD 1320), Spörer (around AD 1450), Maunder (around AD 1690), and Dalton (around AD 1820). Further comparisons of the Saint-Point record with the fluctuations of the Great Aletsch Glacier (Swiss Alps) and a record of Rhône River floods from Lake Bourget (French Alps) give evidence of possible imprints of proxy sensitivity on reconstructed paleohydrological records. In particular, the Great Aletsch record shows an increasing glacier mass from AD 1350 to 1850, suggesting a cumulative effect of the Little Ice Age cooling and/or a possible reflection of a millennial-scale general cooling until the mid-19th century in the Northern Hemisphere. In contrast, the Saint-Point and Bourget records show a general trend toward a decrease in lake levels and in flood magnitude anti-correlated with generally increasing solar irradiance.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnaud, F., Revel, M., Chapron, E., Desmet, M., Tribovillard, N., (2005). 7200 years of Rhône River flooding activity in Lake Bourget, France: A High-resolution sediment record of NW Alps hydrology. The Holocene 15, 420428.Google Scholar
Barbe, J., Faessel, B., Lafont, M., Monnot, A., Mouthon, J., Vergon, J.P., Verneaux, J., (1979). Etude écologique des lacs de Saint-Point et Remoray. Service R"gional d'Am"nagement des Eaux Report.Google Scholar
Barclay, D.J., Wiles, G.C., Calkin, P.E., (2009). Tree-ring crossdates for a First Millennium AD advance of Tebenkof Glacier, southern Alaska. Quaternary Research 71, 2226.Google Scholar
Bard, E., Raisbeck, G., Yiou, F., Jouzel, J., (2000). Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus 52B, 985992.CrossRefGoogle Scholar
Bork, H.R., (1989). Soil erosion during the past millennium in central Europe and its significance within the geomorphodynamics of the Holocene. Catena. Supplement 15, 121131.Google Scholar
Casty, C., Wanner, H., Luterbacher, J., Esper, J., Boehm, R., (2005). Temperature and precipitation variability in the European Alps since AD 1500. International Journal of Climatology 25, 18551880.CrossRefGoogle Scholar
Chapron, E., Beck, C., Pourchet, M., Deconinck, J.-F., (1999). 1822 earthquake-triggered homogenite in Lake Le Bourget (NW Alps). Terra Nova 11, 8692.CrossRefGoogle Scholar
Chapron, E., Desmet, M., De Putter, T., Loutre, M.F., Beck, C., Deconinck, J.F., (2002). Climatic variability in the northwestern Alps, France, as evidenced by 600 years of terrigenous sedimentation in Lake Le Bourget. The Holocene 12, 5968.CrossRefGoogle Scholar
Castellano, E., (2005). Holocene volcanic history as recorded in the sulfate stratigraphy of the European Project for Ice Coring in Antarctica Dome CV (EDC96) ice core. Journal of Geophysical Research 110, DO6114 .Google Scholar
De Vleeschouwer, F., Piotrowska, N., Sikorski, J., Pawlyta, J., Cheburkin, A., Le Roux, G., Lamentowicz, M., Fagel, N., Mauquoy, D., (2009). Multiproxy evidence of "Little Ice Age' palaeoenvironmental changes in a peat bog from northern Poland. The Holocene 19, 625637.Google Scholar
Crowley, T.J., (2000). Causes of climate change over the past 1000 years. Science 289, 270277.Google Scholar
Giguet-Covex, C., Arnaud, F., Poulenard, J., Enters, D., Reyss, J.L., Vidal, O., (2009). Multi-proxy reconstruction of trophic state and hypolimnetic anoxia in a large hard-water lake (Lake Bourget, French Alps) over the past 140 years. Journal of Paleolimnology. (Electronic publication ahead of print). doi:10.1007/S10933-009-9324-9.Google Scholar
Goslar, T., van der Knaap, W.O., Hicks, S., Andric, M., Czernik, J., Goslar, E., R"s"nen, S., Hy"tyl", H., (2005). Radiocarbon dating of modern peat profiles: pre- and post-bomb 14C variations in the construction of age"depth models. Radiocarbon 47, 115134.Google Scholar
Guiot, J., Nicault, A., Rathgeber, C., Edouard, J.L., Guibal, F., Pichard, G., Till, C., (2005). Last-millennium summer-temperature variations in western Europe based on proxy data. The Holocene 15, 489500.Google Scholar
Haltia-Hovi, E., Saarinen, T., Kukkonen, M., (2006). A 2000-year record of solar forcing on varved lake sediment in eastern Finland. Quaternary Science Reviews 26, 678689.CrossRefGoogle Scholar
Haeberli, W., Holzhauser, H., (2003). Alpine glacier mass changes during the past two millennia. Pages News 11, 1315.Google Scholar
Holzhauser, H., Magny, M., Zumb"hl, H., (2005). Glacier and lake-level variations in west-central Europe over the last 3500 years. The Holocene 15, 789801.Google Scholar
Hughes, P.D.M., Blundell, A., Charman, D.J., Bartlett, S., Daniell, J.R.G., Wotjatschke, A., Chambers, F.M., (2006). A 8500 year multi-proxy climate record from a bog in eastern Newfoundland: cal. contributions of meltwater discharge and solar forcing. Quaternary Science Reviews 25, 12081227.CrossRefGoogle Scholar
Jacob, J., Disnar, J.R., Arnaud, F., Chapron, E., Debret, M., Lallier, E., Desmet, M., Revel, M., (2008). Millet cultivation history in the French Alps as evidenced by a sedimentary molecule. Journal of Archaeological Science 35, 814820.CrossRefGoogle Scholar
Jones, P.D., Osborn, T.J., Briffa, K.R., (2001). The evolution of climate over the last millennium. Science 292, 662666.Google Scholar
Krivova, N.A., Solanki, S.K., (2008). Models of solar irradiance variations: current status. Journal of Astrophysics and Astronomy 29, 151158.CrossRefGoogle Scholar
Leroux, A., Bichet, V., Walter-Simonnet, A.V., Magny, M., Adatte, T., Gauthier, E., Richard, H., (2008). The Late-Glacial"Holocene sequence of Lake Saint-Point: detrital inputs as record of climate change and anthropic impact. Comptes-Rendus de l'Acad"mie des Sciences, Paris, G"osciences 340, 883892.Google Scholar
Liu, J., Wang, B., Ding, Q., Kuang, X., Soon, W., Zorita, E., (2009). Centennial variations of the global monsoon precipitation in the last millennium: results from ECHO-G model. Journal of Climate 22, 23562371.Google Scholar
Lund, D.C., Curry, W., (2006). Florida current surface temperature and salinity variability during the last millennium. Paleoceanography 21, 115.Google Scholar
Magnin, A., (1904). Monographies botaniques de 74 lacs jurassiens. Klincksieck, Paris. Google Scholar
Magny, M., (1998). Reconstruction of Holocene lake-level changes in the Jura (France): methods and results. Pal"oklimaforschung 25, 6785.Google Scholar
Magny, M., (2004). Holocene climatic variability as reflected by mid-European lake-level fluctuations, and its probable impact on prehistoric human settlements. Quaternary International 113, 6579.Google Scholar
Magny, M., (2006). Holocene fluctuations of lake levels in west-central Europe: methods of reconstruction, regional pattern, palaeoclimatic significance and forcing factors. Elias, S., Encyclopedia of Quaternary Science 2, Elsevier, 13891399.Google Scholar
Magny, M., Ruffaldi, P., (1995). Younger Dryas and early Holocene lake-level fluctuations in the Jura Mountains, France. Boreas 24, 155172.Google Scholar
Magny, M., Gauthier, E., Vanni"re, B., Peyron, O., (2008). Palaeohydrological changes and human-impact history over the last millennium recorded at Lake Joux in the Jura Mountains, Switzerland. The Holocene 18, 255265.Google Scholar
Mann, M.E., Bradley, R.S., Hughes, M.K., (1999). Northern Hemisphere temperatures during the past millennium: inferences, uncertainties and limitations. Geophysical Research Letters 26, 759762.Google Scholar
Mann, M.E., Zhang, Z., Hughes, M.K., Bradley, R.S., Miller, S.K., Rutherford, S., Ni, F., (2008). Proxy-based reconstructions of hemispheric and global surface temperature variations over the last two millennia. Proceedings of National Academic Science 105, 1325213257.Google Scholar
Mauquoy, D., van Geel, B., Blaauw, M., van der Plicht, J., (2002). Evidence from northwest European bogs shows "Little Ice Age" climatic changes driven by variations in solar activity. The Holocene 12, 16.Google Scholar
Meehl, G.A., Arblaster, J.M., Matthes, K., Sassi, F., van Loon, H., (2009). Amplifying the Pacific climate system response to a small 11-year solar cycleforcing. Science 325, 11141118.Google Scholar
Millet, L., Arnaud, F., Heiri, O., Magny, M., Verneaux, V., Desmet, M., (2009). Late Holocene summer temperature reconstruction from chironomid assemblages of Lake Anterne, northern French Alps. The Holocene 19, 317328.Google Scholar
Moberg, A., Sonechkin, D.M., Holmgren, K., Datsenko, N.M., Karl"n, W., (2005). Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433, 613617.Google Scholar
Pauling, A., Luterbacher, J., Casty, C., Wanner, H., (2006). Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Climate Dynamics 26, 387405.Google Scholar
Reimer, P., (2004). IntCal04 terrestrial radiocarbon age calibration, 26-0 ka BP. Radiocarbon 46, 10291058.Google Scholar
Renssen, H., Goosse, H., Muscheler, R., (2006). Coupled climate model simulation of Holocene cooling events: oceanic feedback amplifies solar forcing. Climate of the Past 2, 7990.Google Scholar
Revel-Rolland, M., Arnaud, F., Chapron, E., Desmet, M., Givelet, N., Alibert, C., McCulloch, M., (2005). Sr and Nd isotope as a tracer of sources of clastic material, in the Bourget lake sediment (NW Alps, France) during the Little Ice Age. Chemical Geology 224-4, 183200.Google Scholar
Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M.M.B., Miller, H., Chen, Z., (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., van der Plicht, J., Spurk, M., (1998). Intcal98 radiocarbon age calibration, 24 000-0 cal BP. Radiocarbon 40, 10411083.Google Scholar
van Geel, B., Raspopov, O.M., Renssen, H., van der Plicht, J., Dergachev, V.A., Meijer, H.A.J., (1999). The role of solar forcing upon climate change. Quaternary Science Reviews 18, 331338.Google Scholar
Verschuren, D., Laird, K.R., Cumming, B.F., (2000). Rainfall and drought in equatorial east Africa during the past 1100 years. Nature 403, 410414.Google Scholar
Vörösmarty, C.J., Green, P., Salisbury, J., Lammers, R.B., (2000). Global water resources: vulnerability from climate change and population growth. Science 289, 284288.Google Scholar
Zielinski, G.A., (2000). Use of paleo-records in determining variability within the volcanism–climate system. Quaternary Science Reviews 19, 417438.Google Scholar