Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T17:01:21.568Z Has data issue: false hasContentIssue false

Response to Grosswald and Hughes (2004), Brigham-Grette et al. (2003). “Chlorine-36 and 14C Chronology support a limited last glacial maximum across central Chukotka, northeastern Siberia, and no Beringian ice Sheet,” and Gualtieri et al. (2003), “Pleistocene raised marine deposits on Wrangel Island, northeastern Siberia: implications for Arctic ice sheet history”

Published online by Cambridge University Press:  20 January 2017

Julie Brigham-Grette
Affiliation:
Department of Geosciences, University of Massachusetts—Amherst, Amherst, MA 01003, USA
Lyn Gualtieri
Affiliation:
Quaternary Research Center University of Washigton, Seattle, WA 98185-1360, USA

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Letter to the Editor
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, P.M., Lozhkin, A.V., (2002). Palynological and radiocarbon data from late Quaternary deposits of northeast Siberia. Anderson, P.M., Lozhkin, A.V., Late Quaternary Vegetation and Climate of Siberia and the Russian Far East: A Palynological and Radiocarbon Database NOAA Paleoclimatology and North East Science Center, Magadan., 2734.Google Scholar
Bauch, H.A., Müller-Lupp, T., Spielhagen, R.F., Taldenkova, E., Kassens, H., Grootes, P.M., Thiede, J., Heinemeier, J., Petryashov, V.V., (2001). Chronology of the Holocene transgression at the northern Siberian margin. Global and Planetary Change 31, 1–4 125139.CrossRefGoogle Scholar
Brigham-Grette, J., Carter, L.D., (1992). Pliocene marine transgressions of northern Alaska: circumarctic correlations and paleoclimate. Arctic 43, 4 7489.Google Scholar
Brigham-Grette, J., Hopkins, D.M., (1995). Emergent-Marine record and paleoclimate of the Last Interglaciation along the northwest Alaskan coast. Quaternary Research 43, 154173.Google Scholar
Brigham-Grette, J., Lundeen, Z., Sea level history of the Chukchi Shelf, new unpublished data.Google Scholar
Brigham-Grette, J., Hopkins, D.M., Ivanov, V.F., Basilyan, A., Benson, S.L., Heiser, P., Pushkar, V., (2001). Last interglacial (Isotope Stage 5) glacial and sea level history of coastal Chukotka Peninsula and St. Lawrence Island, western Beringia. Quaternary Science Reviews 20, 1–3 419436.CrossRefGoogle Scholar
Brigham-Grette, J., Gualtieri, L.M., Glushkova, O.Yu., Hamilton, T.D., Mostoller, D., Kotov, A., (2003). Chlorine-36 and 14C chronology support a limited last glacial maximum across central Chukotka, northeastern Siberia, and no Beringian ice sheet. Quaternary Research 59, 386398.Google Scholar
Brigham-Grette, J., Lozhkin, A.V., Anderson, P.M., Glushkova, O.Y., (2004). Paleoenvironmental conditions in western Beringia before and during the last glacial maximum. Madsen, D.B., Entering America: Northeast Asia and Beringia before the Last Glacial Maximum University of Utah Press, Salt Lake City.Google Scholar
Briner, J.P., Miller, G.H., Davis, P.T., Bierman, P.R., Caffee, M., (2003). Last glacial maximum ice sheet dynamics in Arctic Canada inferred from young erratics perched on ancient tors. Quaternary Science Reviews 22, 5–7 437444.CrossRefGoogle Scholar
Clark, P.U., Mix, A.C., (2002). Ice Sheets and sea level at the last glacial maximum. Quaternary Science Reviews 21, 17.Google Scholar
Colinvaux, P.A., (1967). A long record from St. Lawrence Island, Bering Sea (Alaska). Palaeogeography, Palaeoclimatology, Palaeoecology 3, 2948.CrossRefGoogle Scholar
Dinesman, L.G., Kiseleva, N.K., Savinetsky, A.B., Khassanov, B.F., (1999). Secular dynamics of coastal zone ecosystems of the northeastern Chukchi Peninsula: Chukotka culture layers and natural depositions from the last millennia Russian Academy of Sciences, Severtsov Institute of Ecology and Evolution. Mo Vince Verlag, Tubingen, Germany.In English.Google Scholar
Dinter, D., Carter, L.D., Brigham-Grette, J., (1990). Late Cenozoic Geologic Evolution of the Alaskan North Slope and adjacent continental shelves. Grantz, A., Johnson, L., Sweeney, J.F., The Arctic Ocean Region, The Geology of North America vol. L, Geological Society of America, Boulder, CO., 459490.Google Scholar
Elias, S.A., Short, S.K., Phillips, R.L., (1992). Paleoecology of late-glacial peats from the Bering land bridge, Chukchi Sea shelf region, northwestern Alaska. Quaternary Research 38, 371378.Google Scholar
Elias, S.A., Brigham-Grette, J., (2001). Beringian paleoenvironments: Festschrift in honour of David M. Hopkins. Quaternary Science Reviews 20(1–3), Pergamon Elsevier, Oxford, UK., 574.Google Scholar
Felzer, B., (2001). Climate impacts of an ice sheet in the east Siberia during the last glacial maximum. Quaternary Science Reviews 20, 437448.Google Scholar
Glushkova, O.Y., (2001). Geomorphological correlation of Late Pleistocene glacial complexes of Western and Eastern Beringia. Quaternary Science Reviews 20, 405417.Google Scholar
Goetcheus, V.G., Birks, H.H., (2001). Full glacial upland tundra vegetation preserved under tephra in the Beringia National Park, Seward Peninsula, Alaska. Quaternary Science Reviews 20, 135147.Google Scholar
Gorborenko, S.A., Southon, J.R., Keigwin, L.D., Cherepanova, M.V., Gvozdeva, I.G., (2004). Late Pleistocene–Holocene oceanographic variability in the Okhotsk Sea: geochemical, lithological and paleontological evidence. Palaeogeography, Palaeoclimatology, Palaeoecology (in press).Google Scholar
Grosswald, M.G., (1988). An Antarctic-style ice sheet in the Northern Hemisphere: towards new global glacial theory. Polar Geography and Geology 12, 239267.Google Scholar
Grosswald, M.G., (1998). Late-Weichselian ice sheets in Arctic and Pacific Siberia. Quaternary International 45–46, 318.Google Scholar
Grosswald, M., Hughes, T., (1995). Paleoglaciology's grand unsolved problem. Journal of Glaciology 41, 313332.Google Scholar
Grosswald, M., Hughes, T., (2002). The Russian component of an Arctic ice sheet during the last glacial maximum. Quaternary Science Reviews 21, 121146.Google Scholar
Gualtieri, L., Brigham-Grette, J., (2001). The age and origin of the Little Diomede Island upland surface. Arctic 54, 1221.CrossRefGoogle Scholar
Gualtieri, L., Glushkova, O., Brigham-Grette, J., (2000). Evidence for restricted ice extent during the last glacial maximum in the Koryak Mountains of Chukotka, far eastern Russia. Geological Society of America Bulletin 112, 11061118.Google Scholar
Gualtieri, L., Vartanyan, S., Brigham-Grette, J., Patricia, M., Anderson, P.M., (2003). Pleistocene raised marine deposits on Wrangel Island, NE Siberia: implications for Arctic ice sheet history. Quaternary Research 59, 399410.Google Scholar
Gualtieri, L., Vartanyan, S., Brigham-Grette, J., Patricia, M., Anderson, P.M., submitted for publication. Evidence against glaciation during the last glacial maximum in the East Siberian Sea and Wrangel Island. northeast Siberia. Geological Society of America Bulletin.Google Scholar
Hamilton, T.D., (1994). Late Cenozoic glaciation of Alaska. Plafker, G., Berg, H.C., The Geology of Alaska, Geology of North America Geological Society of America, Boulder, CO., 813844.Google Scholar
Heiser, P.M., (1997). Extent, timing, and paleogeographic significance of multiple Pleistocene glacations in the Bering Strait Region.. Unpublished dissertation. Department of Geology, University of Alaska, Fairbanks.Google Scholar
Heiser, P.M., Roush, J.J., (2001). Pleistocene glaciations in Chukotka, Russia: moraine mapping using satellite synthetic aperture radar (SAR) imagery. Quaternary Science Reviews 20, 393404.Google Scholar
Hubberten, H.W., Andreev, A., Astakhov, V., Demidov, I., Dowdeswell, J.A., Henriksen, M., Hjort, C., Houmark-Nielsen, M., Jakobsson, M., Kuzmina, S., Larsen, E., Lunkka, J.-P., Lyså, A., Mangerud, J., Möller, P., Saarnisto, M., Schirrmeister, L., Sher, A.V., Siegert, C., Siegert, M.J., Svendsen, J.I., (2004). The periglacial climate and environment in northern Eurasia during the last glaciation. Quaternary Science Reviews 23, 11–13 13331357.Google Scholar
Ivanov, V.F., (1986). Quaternary deposits of coastal eastern Chukotka. Far East Science Center, Academy of Sciences of the USSR, Vladivostok.[In Russian].Google Scholar
Jakobsson, M., Backman, J., Murray, A., Lovlie, R., (2003). Optically stimulated luminescence dating supports central Arctic Ocean cm-scale sedimentation rates. Geochemistry, Geophysics, Geosystems 4, 2 111.CrossRefGoogle Scholar
Karhu, J.A., Tschudi, S., Saarnisto, M., Kubik, P., Schlüchter, C., (2001). Constraints for the latest glacial advance on Wrangel Island, Arctic Ocean, from rock surface exposure dating. Global and Planetary Change 31, 447451.Google Scholar
Kaufman, D.S., Porter, S.C., Gillispie, A.R., (2003). Quaternary alpine glaciation in Alaska, the Pacific Northwest, Sierra Nevada and Hawaii. Gillispie, A.R., Porter, S.C., Atwater, B.F., The Quaternary Period in the United States. Developments in Quaternary Science vol. 1, 77104.Google Scholar
Keigwin, L., (1998). Glacial-age hydrography of the far northwest Pacific Ocean. Paleoceanography 13, 323339.Google Scholar
Kos'ko, M.K., Cecile, M.P., Harrison, J.C., Ganelin, V.G., Khandoshko, N.V., Lopatin, B.G., (1993). Geology of Wrangel Island, between Chukchi and East Siberian Seas, northeastern Russia. Bulletin 461, Geological Survey of Canada, Ottawa, Canada.Google Scholar
Kotov, A., (2004). personal communication.. Anadyr, Chukotka, Russia.Google Scholar
Leffingwell, E.D.K., (1919). The Canning River region, northern Alaska. Professional Paper vol. 109, U.S. Geological Survey, Washington D.C. Government Printing Office.CrossRefGoogle Scholar
Long, A., Sher, A., Vartanyan, S., (1994). Holocene mammoth dates. Nature 369, 364.Google Scholar
Lozhkin, A., (2004). personal communication.. Madadan, Russia.Google Scholar
MacPhee, R.D.E., Tikhonov, A.N., Mol, D., de Marliave, C., van der Plicht, H., Greenwood, A.D., Flemming, C., Agenbroad, L., (2002). Radiocarbon chronologies and extinction dynamics of the Late Quaternary mammalian megafauna of the Taymyr Peninsula, Russian Federation. Journal of Archaeological Science 29, 10171042.Google Scholar
Madsen, D.B., (2004). Entering America: Northeast Asia and Beringia Before the Last Glacial Maximum. University of Utah Press, Salt Lake City.Google Scholar
Mann, D.H., Hamilton, T.D., (1995). Late Pleistocene and Holocene paleoenvironments of the north Pacific coast. Quaternary Science Reviews 14, 449471.Google Scholar
Marshall, S.J., James, T.S., Clarke, G.K.C., (2002). North American ice sheet reconstructions at the last glacial maximum. Quaternary Science Reviews 21, 1–3 175192.Google Scholar
Mason, O.K., Jordan, J.W., (2002). Minimal late Holocene sea level rise in the Chukchi Sea: Arctic insensitivity to global change. Global and Planetary Change 32, 1 1323.CrossRefGoogle Scholar
Nürnberg, D., Tiedemann, R., in press. Environmental change in the Sea of Okhotsk over the past 1.1 million years—atmospheric teleconnections to China. Paleoceanography.Google Scholar
Nürnberg, D., Tiedemann, R., Kaiser, A., Biebow, N., (2003). Paleoceanographic studies in the sea of Okhot—Implications for the glaciation history of NE Siberia. European Geophysical Society, Geophysical Research Abstracts 5, 11171.Google Scholar
Polyak, L., Edwards, M.H., Coakley, B.J., Jakobsson, M., (2001). Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms. Nature 410, 453457.Google Scholar
Quaternary International >(95/96). 1211. (issue with many papers on ice modeling).(95/96).+1–211.+(issue+with+many+papers+on+ice+modeling).>Google Scholar
Sancetta, C., Heusser, L., Labeyrie, L., Sathy-Naidu, A., Robinson, S.W., (1985). Wisconsin-Holocene paleoenvironment of the Bering Sea: evidence from diatoms, pollen, oxygen isotopes, and clay minerals. Marine Geology 62, 5568.Google Scholar
Shackleton, J., (1982). Environmental histories from Whitefish and Imuruk Lakes, Seward Peninsula, Alaska.. Report 76, Ohio State University Institute of Polar Studies.Google Scholar
Sher, A., (1995). Is there any real evidence for a huge shelf ice sheet in East Siberia?. Quaternary International 28, 3941.Google Scholar
Sher, A., Kuzmina, S., Kiselyov, S., Lister, A., (2003). Tundra–steppe environment in arctic Siberia and the evolution of the wooly mammoth. Storer, J.E., The Third International Mammoth Conference, Occasional Papers in Earth Sciences vol. 5, Government of Yukon, Canada., 136142.Google Scholar
Siegert, M.J., Marsait, I., (2000). Numerical reconstructions of LGM climate across the Eurasian Arctic. Quaternary Science Reviews 20, 15951606.Google Scholar
Sulerzhitsky, L.D., Romanenko, F.A., (1999). The “twilight” of the mammoth fauna in the Asiatic Arctic. Ambio 28, 3 251255.Google Scholar
Svendsen, J., Astakhov, V., Bolshiyanov, D., Demidov, I., Dowdeswell, J., Gataullin, V., Hjort, C., Hubberten, H., Larsen, E., Mangerud, J., Melles, M., Moeller, P., Saarnisto, M., Siegert, M., (1999). Maximum extent of the Eurasian ice sheets in the Barents and Kara Sea region during the Weichselian. Boreas 28, 234242.Google Scholar
Svitoch, A.A., (1976). Structure and age of marine terraces of the lower Anadyr depression. Kontrimavichus, V.L., Beringia in the Cenozoic Era Amerind Publishing Co, Vladivostok, New Delhi., 8287.Google Scholar
Vartanyan, S.L., Garutt, V.E., Sher, A.V., (1993). Holocene dwarf mammoths from Wrangel Island in the Siberian Arctic. Nature 362, 337340.Google Scholar