Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T16:46:17.450Z Has data issue: false hasContentIssue false

Refinements of the European Mammal Biochronology from the Magnetic Polarity Record of the Plio–Pleistocene Zújar Section, Guadix-Baza Basin, SE Spain

Published online by Cambridge University Press:  20 January 2017

Oriol Oms
Affiliation:
Fac. Ciències, Geologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain, E-mail: orioloms@minorisa.es
Jaume Dinarès-Turell
Affiliation:
Institut de Ciències de la Terra “J. Almera” (C.S.I.C.), c/ Solé i Sabarı́s s/n, 08028, Barcelona, Spain, Paleomagnetic Laboratory (Fort Hoofddijk), Budapestlaan, 17, 3584 CD, Utrecht, The Netherlands, E-mail: dinares@geo.uu.nl
Jordi Agustı́
Affiliation:
Institut de Paleontologia “M. Crusafont,” c/ Escola Industrial 23, 08201, Sabadell, Spain, E-mail: inst.paleontologia@bcn.servicom.es
Josep M. Parés
Affiliation:
Institut de Ciències de la Terra “J. Almera” (C.S.I.C.), c/ Solé i Sabarı̀s s/n, 08028, Barcelona, Spain, E-mail: jmpares@umich.edu

Abstract

The magnetobiostratigraphy study of the 130-m-thick Zújar section (Negratı́n clays unit, Guadix-Baza Basin, Spain) provides a remarkable opportunity to improve the correlation of European mammal biostratigraphy to the Geomagnetic Polarity Time Scale. The occurrence of 12 well-defined magnetozones and four paleontological sites with diagnostic faunas ranging from the MN 15 biozone (Ruscinian) to the MN 17 biozone (Villanyian), leads to an unambiguous correlation to chrons spanning from the Gilbert to the Matuyama epochs. This provides two new time constraints: (1) the boundary between MN 15 (Ruscinian) and MN 16 (Villanyian) biozones is recorded between chron C2An.3n and the base of chron C2An.2n and (2) the boundary between the upper and lower MN 16 subzones (Villanyian) is located between chron C2An.2n and the base of chron C2An.1n. The correlation between the Ruscinian–Villanyian boundary and the 3.3-myr-B.P. cooling event seems to be confirmed, while the early/late Villanyian boundary could be tentatively correlated to the glacial event at 2.6 myr B.P. Furthermore, MN 15 faunas are found in the lowermost part of chron C2Ar, which is in agreement with and reinforces the emplacement of the MN 14–MN 15 Ruscinian zones boundary at the reversal from chron 3n.1n to chron C2Ar.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre, J., Agustı́, J., Castillo, C., and Ferriz, J.J. (1992). Marine-continental correlation in the Pliocene of the Guadalquivir basin and the Mediterranean margin (Spain). Atlantic General Events during Neogenep. 11–14Google Scholar
Aguirre, J., Castillo, C., Ferriz, F.J., Agustı́, J., and Oms, O. (1994). Marine-continental magnetobiostratigraphic correlation of the Dolomys subzone (Middle of Late Ruscinian): Implications for the Late Ruscinian Age. Paleogeography, Paleoclimatology, Paleoecology 117, 139152.CrossRefGoogle Scholar
Agustı́, J. (1986). Syntèse biostratigraphique du Plio-Pléistocène de Guadix-Baza (Province de Granada, sudest de l'Espagne). Geobios 19, 505510.Google Scholar
Agustı́, J., Galobart, A., and Martı́n Suárez, E. (1993). Kislangia gusii . Scripta Geologica 103, 119134.Google Scholar
Agustı́, J., and Moyà-Solà, S. (1991). Spanish Neogene Mammal succession and its bearing on continental biochronology. Newsletter Stratigraphy 25, 91114.Google Scholar
Agustı́, J., Oms, O., Garcés, M., and Parés, J.M. (1997). Calibration of the late Pliocene–early Pleistocene transition in the continental beds of the Guadix–Baza Basin (Southern Spain). Quaternary International 40, 93100.Google Scholar
Berggren, W.A., Hilgen, F.J., Langereis, C.G., Kent, D.K., Obradovich, J.D., Raffi, Y., Raymo, M.E., and Shackleton, N.J. (1995). Late Neogene chronology: New perspectives in high-resolution stratigraphy. Geological Society of American Bulletin 107, 12721287.Google Scholar
Cande, S.C., and Kent, D. (1995). Revised calibration of the geomagnetic polarity time scale for the late Cretaceous and Cenozoic. Journal of Geophysical Research 100, 60936095.CrossRefGoogle Scholar
Clement, B.M., and Robinson, F. (1986). The magnetostratigraphy of leg 94 sediments. Initial Report DSDP 94, 921924.Google Scholar
Garcés, M., Agustı́, J., Cabrera, L., and Parés, J.M. (1996). Magnetostratigraphy of the Vallesian (late Miocene) in the Vallès–Penedès Basin (northeast Spain). Earth Planetary Science Letters 142, 381396.Google Scholar
Garcés, M., Agustı́, J., and Parés, J.M. (1997). Late Pliocene Continental Chronology from the Guadix–Baza basin (Betics, Spain). Earth Planetary Science Letters 146, 677687.CrossRefGoogle Scholar
Garcés, M., Parés, J.M., and Cabrera, L. (1996). Further evidence for inclination shallowing in red beds. Geophysical Research Letters 23, 20652068.CrossRefGoogle Scholar
Keigwin, L.D. (1986). Pliocene stable-isotope record of the deep sea drilling project site 606: Sequential events of18 . Initial Report DSDP 94, 911920.Google Scholar
Kirschvink, J.L. (1980). The least-squares line and plane and the analysis of paleomagnetic data. Geophysical Journal of the Royal Astronomical Society 62, 699718.Google Scholar
Krijgsman, W., Garcés, M., Langereis, C.G., Daams, R., van Dam, J., van der Meulen, A.J., Agustı́, J., and Cabrera, L. (1996). A new chronology for the middle to late Miocene continental record in Spain. Earth Planetary Science Letters 142, 367380.CrossRefGoogle Scholar
Lindsay, E. Correlation of Eurasian late Cenozoic mammal chronology with the magnetic polarity time scale. Paleogeography, Paleoclimatology, Paleoecology 133, (1997). 117289.CrossRefGoogle Scholar
Lindsay, E. (1997). Eurasian mammal biochronology: An overview. Paleogeography, Paleoclimatology, Paleoecology 133, 117128.Google Scholar
Mein, P. (1975). Resultats du Groupe de travail des vertebres. Report on Activity of RCMNS Working Groupp. 78–81Google Scholar
Mein, P. (1990). Updating of the MN zones.Lindsay, European Neogene Mammal Chronology Plenum, New York.7390.Google Scholar
Mein, P., Moissenet, E., and Adrover, R. (1990). Biostratigraphie du Néogène Supérieur du bassin de Teruel. Paleontologia i Evolució 23, 121139.Google Scholar
Oms, O., Garcés, M., Parés, J.M., Agustı́, J., Anadón, P., and Julià, R. (1994). Magnetostratigraphic characterization of a thick Lower Pleistocene lacustrine sequence from the Baza Basin (Betic Chain, Southern Spain). Physics Earth Planetary Interiors 85, 173180.Google Scholar
Opdyke, N., Mein, P., Lindsay, E., Perez-González, A., Moissenet, E., and Norton, V.L. (1997). Continental deposits, magnetostratigraphy and vertebrate paleontology, late Neogene of Eastern Spain. Paleogeography, Paleoclimatology, Paleoecology 133, 129148.CrossRefGoogle Scholar
Peña, J.A. (1985). La Depresión de Guadix-Baza. Estudios geológicos 41, 3346.Google Scholar
Sanz de Galdeano, C., and Vera, J.A. (1992). Stratigraphic record and palaeogeographical context of the neogene basins in the Betic Cordillera, Spain. Basin Research 4, 2136.Google Scholar
Tauxe, L., and Kent, D.V. (1984). Properties of a detrital remanence carried by hematite from study of modern river deposits and laboratory experiments. Geophysical Journal Royal Astronomical Society 77, 543561.CrossRefGoogle Scholar
Vera, J.A. (1970). Estudio estratigráfico de la Depresión de Guadix-Baza. Boletı́n Geológico Minero España 84, 429462.Google Scholar
Zijderveld, J.D.A. (1967). A. C. demagnetization of rocks: Analysis of results.Collison, D.W. Methods in Paleomagnetism Elsevier, Amsterdam.254286.Google Scholar