Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T16:25:16.068Z Has data issue: false hasContentIssue false

Reconstruction of the late Quaternary paleoenvironments of the Nussloch loess paleosol sequence—Comment to the paper published by Zech et al., Quaternary Research 78 (2012), 226–235

Published online by Cambridge University Press:  20 January 2017

Guido L.B. Wiesenberg*
Affiliation:
Department for Geography, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
Martina Gocke
Affiliation:
Department of Agroecosystem Research, University of Bayreuth, 95440 Bayreuth, Germany
*
*Corresponding author. Fax: + 41 44 635 6848. E-mail address:guido.wiesenberg@geo.uzh.ch
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Letter to the Editor
Copyright
University of Washington

References

Amelung, W., Brodowski, S., Sandhage-Hofmann, A., and Bol, R. Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter. Donald, L.S. Advances in Agronomy. (2008). Academic Press, 155250.Google Scholar
Antoine, P., Rousseau, D.D., Zoller, L., Lang, A., Munaut, A.V., Hatte, C., and Fontugne, M. High-resolution record of the last interglacial–glacial cycle in the Nussloch loess–palaeosol sequences, Upper Rhine Area, Germany. Quaternary International 76–7, (2001). 211229.Google Scholar
Ferguson, A.L., Debenedetti, P.G., and Panagiotopoulos, A.Z. Solubility and molecular conformations of n-alkane chains in water. The Journal of Physical Chemistry. B 113, (2009). 64056414.Google Scholar
Gaudinski, J.B., Torn, M.S., Riley, W.J., Dawson, T.E., Joslin, J.D., and Majdi, H. Measuring and modeling the spectrum of fine-root turnover times in three forests using isotopes, minirhizotrons, and the Radix model. Global Biogeochemical Cycles 24, (2010). Google Scholar
Gocke, M., Pustovoytov, K., Kuhn, P., Wiesenberg, G., Löscher, M., and Kuzyakov, Y. Carbonate rhizoliths in loess and their implications for paleoenvironmental reconstruction revealed by isotopic composition: δ13C, 14C. Chemical Geology 283, (2011). 251260.Google Scholar
Gocke, M., Kuzyakov, Y., and Wiesenberg, G.L.B. Differentiation of plant derived organic matter in soil, loess and rhizoliths based on n-alkane molecular proxies. Biogeochemistry (2011). http://dx.doi.org/10.1007/s10533-011-9659-yGoogle Scholar
Huang, X., Wang, C., Zhang, J., Wiesenberg, G.L.B., Zhang, Z., and Xie, S. Comparison of free lipid compositions between roots and leaves of plants in the Dajiuhu Peatland, central China. Geochemical Journal 45, (2011). 365373.Google Scholar
Jansen, B., Nierop, K.G.J., Hageman, J.A., Cleef, A.M., and Verstraten, J.M. The straight-chain lipid biomarker composition of plant species responsible for the dominant biomass production along two altitudinal transects in the Ecuadorian Andes. Organic Geochemistry 37, (2006). 15141536.Google Scholar
Kell, D.B. Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 367, (2012). 15891597.Google Scholar
Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry 34, (2002). 139162.Google Scholar
Lehmann, M.F., Bernasconi, S.M., Barbieri, A., and McKenzie, J.A. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochimica et Cosmochimica Acta 66, (2002). 35733584.Google Scholar
Lichtfouse, É., Chenu, C., Baudin, F., Leblond, C., Da Silva, M., Behar, F., Derenne, S., Largeau, C., Wehrung, P., and Albrecht, P. A novel pathway of soil organic matter formation by selective preservation of resistant straight-chain biopolymers: chemical and isotope evidence. Organic Geochemistry 28, (1998). 411415.Google Scholar
Marschner, B., Brodowski, S., Dreves, A., Gleixner, G., Gude, A., Grootes, P.M., Hamer, U., Heim, A., Jandl, G., Ji, R., Kaiser, K., Kalbitz, K., Kramer, C., Leinweber, P., Rethemeyer, J., Schäffer, A., Schmidt, M.W.I., Schwark, L., and Wiesenberg, G.L.B. How relevant is recalcitrance for the stabilization of organic matter in soils?. Journal of Plant Nutrition and Soil Science 171, (2008). 91110.Google Scholar
Marseille, F., Disnar, J.R., Guillet, B., and Noack, Y. n-Alkanes and free fatty acids in humus and A1 horizons of soils under beech, spruce and grass in the Massif-Central (Mont-Lozère), France. European Journal of Soil Science 50, (1999). 433441.Google Scholar
Mendez-Millan, M., Dignac, M.F., Rumpel, C., Rasse, D.P., and Derenne, S. Molecular dynamics of shoot vs. root biomarkers in an agricultural soil estimated by natural abundance 13C labelling. Soil Biology and Biochemistry 42, (2010). 169177.Google Scholar
Nguyen Tu, T.T., Derenne, S., Largeau, C., Bardoux, G., and Mariotti, A. Diagenesis effects on specific carbon isotope composition of plant n-alkanes. Organic Geochemistry 35, (2004). 317329.Google Scholar
Nguyen Tu, T.T., Egasse, C., Zeller, B., Bardoux, G., Biron, P., Ponge, J.-F., David, B., and Derenne, S. Early degradation of plant alkanes in soils: a litterbag experiment using 13C-labelled leaves. Soil Biology and Biochemistry 43, (2011). 22222228.Google Scholar
Poynter, J., and Eglinton, G. The biomarker concept — strengths and weaknesses. Fresenius' Journal of Analytical Chemistry 339, (1991). 725731.Google Scholar
Rasse, D., Rumpel, C., and Dignac, M.-F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant and Soil 269, (2005). 341356.Google Scholar
Roumet, C., Picon-Cochard, C., Dawson, L.A., Joffre, R., Mayes, R., Blanchard, A., and Brewer, M.J. Quantifying species composition in root mixtures using two methods: near-infrared reflectance spectroscopy and plant wax markers. New Phytologist 170, (2006). 631638.Google Scholar
Shimoyama, A., and Johns, W.D. Formation of alkanes from fatty acids in the presence of CaCO3 . Geochimica et Cosmochimica Acta 36, (1972). 8791.Google Scholar
Verchot, L., Krug, T., Lasco, R.D., Ogle, S., Raison, J., Li, Y., Martino, D.L., McConkey, B.G., Smith, P., and Karunditu, M.W. Grassland. Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., and Tanabe, K. Agriculture, Forestry and Other Land Use. IPCC Guidelines for National Greenhouse Gas Inventories vol. 4, (2006). IGES, Japan, Hayama, Kanagawa.Google Scholar
Zech, M., Pedentchouk, N., Buggle, B., Leiber, K., Kalbitz, K., Marković, S.B., and Glaser, B. Effect of leaf litter degradation and seasonality on D/H isotope ratios of n-alkane biomarkers. Geochimica et Cosmochimica Acta 75, (2011). 49174928.Google Scholar
Zech, M., Rass, S., Buggle, B., Löscher, M., and Zöller, L. Reconstruction of the late Quaternary paleoenvironments of the Nussloch loess paleosol sequence, Germany, using n-alkane biomarkers. Quaternary Research 78, (2012). 226235.Google Scholar
Zonneveld, K.A.F., Versteegh, G.J.M., Kasten, S., Eglinton, T.I., Emeis, K.-C., Huguet, C., Koch, B.P., de Lange, G.J., de Leeuw, J.W., Middelburg, J.J., Mollenhauer, G., Prahl, F.G., Rethemeyer, J., and Wakeham, S.G. Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record. Biogeosciences 7, (2010). 483511.Google Scholar