Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T18:09:22.391Z Has data issue: false hasContentIssue false

Processes of Paleoindian site and desert pavement formation in the Atacama Desert, Chile

Published online by Cambridge University Press:  19 June 2020

Paula C. Ugalde*
Affiliation:
School of Anthropology, The University of Arizona, Tucson, AZ85721, USA
Jay Quade
Affiliation:
School of Anthropology, The University of Arizona, Tucson, AZ85721, USA Department of Geosciences, The University of Arizona, Tucson, AZ85721, USA
Calogero M. Santoro
Affiliation:
Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile.
Vance T. Holliday
Affiliation:
School of Anthropology, The University of Arizona, Tucson, AZ85721, USA Department of Geosciences, The University of Arizona, Tucson, AZ85721, USA
*
*Corresponding author at: School of Anthropology, The University of Arizona, Tucson, AZ85721-0030, USA. E-mail address: paulaugalde@email.arizona.edu (Paula Ugalde)

Abstract

A distinct feature of many of the earliest archaeological sites (13,000-11,200 cal yr BP) at the core of the Atacama Desert is that they lie at or just below the surface, often encased in desert pavements. In this study, we compare these sites and undisturbed desert pavements to understand archaeological site formation and pavement development and recovery. Our results indicate these pavements and their soils are poorly developed regardless of their age. We propose that this is because of sustained lack of rain and extreme physical breakdown of clasts by salt expansion. Thus, the core of the Atacama provides an example of the lower limits of rainfall (<50 mm/yr) needed to form desert pavements. At site Quebrada Maní 12 (QM12), humans destroyed the pavement. After abandonment, human-made depressions were filled with eolian sands, incorporating artifacts in shallow deposits. Small and medium-sized artifacts preferentially migrated upwards, perhaps due to earthquakes and the action of salts. These artifacts, which now form palimpsests at the surface, helped – along with older clasts - to restore surface clast cover. Larger archaeological features remained undisturbed on top of a deeper Byzm horizon. The vesicular A horizons (Av horizons) have not regenerated on the archaeological sites due to extreme scarcity of rainfall during the Holocene.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrahams, A.D., Parsons, A.J., 1991. Resistance to overland flow on desert pavement and its implications for sediment transport modeling. Water Resources Research 27, 18271836.10.1029/91WR01010CrossRefGoogle Scholar
Adelsberger, K.A., Smith, J.R., 2009. Desert pavement development and landscape stability on the Eastern Libyan Plateau, Egypt. Geomorphology 107, 178194.CrossRefGoogle Scholar
Adelsberger, K.A., Smith, J.R., 2010. Paleolandscape and paleoenvironmental interpretation of spring-deposited sediments in Dakhleh Oasis, Western Desert of Egypt. Catena 83, 722.CrossRefGoogle Scholar
Adelsberger, K.A., Smith, J.R., McPherron, S.P., Dibble, H.L., Olszewski, D.I., Schurmans, U.A., Chiotti, L., 2013. Desert pavement disturbance and artifact taphonomy: a case study from the eastern Libyan plateau, Egypt. Geoarchaeology 28, 112130.10.1002/gea.21431CrossRefGoogle Scholar
Al-Farraj, A., Harvey, A.M., 2000. Desert pavement characteristics on wadi terrace and alluvial fan surfaces: Wadi Al-Bih, U.A.E. and Oman. Geomorphology 35, 279297.CrossRefGoogle Scholar
Amit, R., Gerson, R., Yaalon, D.H., 1993. Stages and rate of the gravel shattering process by salts in desert Reg soils. Geoderma 57, 295324.CrossRefGoogle Scholar
Amundson, R., Dietrich, W., Bellugi, D., Ewing, S., Nishiizumi, K., Chong, G., Owen, J., et al. , 2012. Geomorphologic evidence for the late Pliocene onset of hyperaridity in the Atacama Desert. Bulletin of the Geological Society of America 124, 10481070. https://doi.org/10.1130/B30445.1CrossRefGoogle Scholar
Anderson, K., Wells, S., Graham, R., 2002. Pedogenesis of vesicular horizons, Cima Volcanic Field, Mojave Desert, California. Soil Science Society of America Journal 66, 878887.CrossRefGoogle Scholar
Bockheim, J.G., 2010. Evolution of desert pavements and the vesicular layer in soils of the transantarctic mountains. Geomorphology 118, 433443.10.1016/j.geomorph.2010.02.012CrossRefGoogle Scholar
Chadwick, O.A., Davis, J.O., 1990. Soil-forming intervals caused by eolian sediment pulses in the Lahontan basin, northwestern Nevada. Geology 18, 243246.2.3.CO;2>CrossRefGoogle Scholar
Cooke, R.U., 1970. Stone pavements in deserts. Annals of the Association of American Geographers 60, 560577.CrossRefGoogle Scholar
Cook, R., Warren, A., Goudie, A., 1993. Desert geomorphology. UCL Press, London.Google Scholar
Cosentino, N.J., Jordan, T.E., Derry, L.A., Morgan, J.P., 2015. 87Sr/86Sr in recent accumulations of calcium sulfate on landscapes of hyperarid settings: a bimodal altitudinal dependence for northern Chile (19.5 S–21.5 S). Geochemistry, Geophysics, Geosystems 16, 43114328.CrossRefGoogle Scholar
Courbin, P., 1987. André Leroi-Gourhan et la technique des fouilles. Bulletin de la Société Préhistorique Française 84, 328334.10.3406/bspf.1987.9846CrossRefGoogle Scholar
Davis, W.L., de Pater, I., McKay, C.P., 2010. Rain infiltration and crust formation in the extreme arid zone of the Atacama Desert, Chile. Planetary and Space Science 58, 616622.10.1016/j.pss.2009.08.011CrossRefGoogle Scholar
de Haas, T., Ventra, D., Carbonneau, P.E., Kleinhans, M.G., 2014. Debris-flow dominance of alluvial fans masked by runoff reworking and weathering. Geomorphology 217, 165181.10.1016/j.geomorph.2014.04.028CrossRefGoogle Scholar
DGF, 2007. Estudio de variabilidad climática en Chile para el siglo XXI financiado por la Comisión Nacional de Medio Ambiente (CONAMA). Departmento de Geofísica, Universidad de Chile. http://www.dgf.uchile.cl/PRECIS.Google Scholar
Diaz, F.P., Latorre, C., Maldonado, A., Quade, J., Betancourt, J.L., 2011. Rodent middens reveal episodic, long-distant plant colonizations across the hyperarid Atacama Desert during the last 34,000 years. Journal of Biogeography 39, 510525.CrossRefGoogle Scholar
Dietze, M., Bartel, S., Lindner, M., Kleber, A., 2012. Environmental mechanisms and control factors of vesicular soil structure. Catena 99, 8396.CrossRefGoogle Scholar
Dietze, M., Dietze, E., Lomax, J., Fuchs, M., Kleber, A., Wells, S.G., 2016. Environmental history recorded in aeolian deposits under stone pavements, Mojave Desert, USA. Quaternary Research 85, 416.CrossRefGoogle Scholar
Dietze, M., Groth, J., Kleber, A., 2013. Alignment of stone-pavement clasts by unconcentrated overland flow—implications of numerical and physical modelling. Earth Surface Processes and Landforms 38, 12341243.10.1002/esp.3365CrossRefGoogle Scholar
Dietze, M., Kleber, A., 2012. Contribution of lateral processes to stone pavement formation in deserts inferred from clast orientation patterns. Geomorphology 139–140, 172187.10.1016/j.geomorph.2011.10.015CrossRefGoogle Scholar
Dixon, J.C., 2009. Aridic soils, patterned ground, and desert pavements. In: Abrahams, A.D., Parsons, A.J. (Eds.), Geomorphology of Desert Environments. Chapman & Hall, London, pp. 6481.Google Scholar
Dunai, T.J., González López, G.A., Juez-Larré, J., 2005. Oligocene-Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms. Geology 33, 321324.10.1130/G21184.1CrossRefGoogle Scholar
Eppes, M.C., McFadden, L.D., Wegmann, K.W., Scuderi, L.A., 2010. Cracks in desert pavement rocks: further insights into mechanical weathering by directional insolation. Geomorphology 123, 97108.10.1016/j.geomorph.2010.07.003CrossRefGoogle Scholar
Ericksen, G.E., 1981. Geology and origin of the Chilean nitrate deposits. U.S. Geological Survey Professional Paper 42. https://doi.org/10.2113/gsecongeo.15.3.187CrossRefGoogle Scholar
Evenari, M., Noy-Meir, I., Goodall, D.W., (Eds.), 1985. Hot Deserts and Arid Shrublands: Part A. Elsevier, Amsterdam.Google Scholar
Evenstar, L.A., Hartley, A.J., Stuart, F.M., Mather, A.E., Rice, C.M., Chong, G., 2009. Multiphase development of the Atacama planation surface recorded by cosmogenic 3He exposure ages: implications for uplift and Cenozoic climate change in western South America. Geology 37, 2730.CrossRefGoogle Scholar
Evenstar, L. A., Mather, A. E., Hartley, A. J., Stuart, F. M., Sparks, R. S.J., Cooper, F.J., 2017. Geomorphology on geologic timescales: evolution of the late Cenozoic Pacific paleosurface in northern Chile and southern Peru. Earth-Science Reviews 171, 127.10.1016/j.earscirev.2017.04.004CrossRefGoogle Scholar
Ewing, S.A., Sutter, B., Owen, J., Nishiizumi, K., Sharp, W., Cliff, S.S., Perry, K., Dietrich, W., McKay, C.P., Amundson, R., 2006. A threshold in soil formation at Earth's arid-hyperarid transition. Geochimica et Cosmochimica Acta 70, 52935322.10.1016/j.gca.2006.08.020CrossRefGoogle Scholar
Finstad, K., Pfeiffer, M., Amundson, R., 2014. Hyperarid Soils and the Soil Taxonomy. Soil Science Society of America Journal 78 (6), 18451851. http://dx.doi.org/10.2136/sssaj2014.06.0247.CrossRefGoogle Scholar
Fuchs, M., Dietze, M., Al-Qudah, K., Lomax, J., 2015. Dating desert pavements—first results from a challenging environmental archive. Quaternary Geochronology 30, 342349.CrossRefGoogle Scholar
Fuchs, M., Lomax, J., 2019. Stone pavements in arid environments: reasons for De overdispersion and grain-size dependent OSL ages. Quaternary Geochronology 49, 191198.CrossRefGoogle Scholar
Garreaud, R.D., Molina, A., Farias, M., 2010. Andean uplift, ocean cooling and Atacama hyperaridity: a climate modeling perspective. Earth and Planetary Science Letters 292, 3950.CrossRefGoogle Scholar
Gayo, E.M., Latorre, C., Jordan, T.E., Nester, P.L., Estay, S.A., Ojeda, K.F., Santoro, C.M., 2012a. Late Quaternary hydrological and ecological changes in the hyperarid core of the northern Atacama Desert (~21°S). Earth-Science Reviews 113, 120140.CrossRefGoogle Scholar
Gayo, E.M., Latorre, C., Santoro, C.M., Maldonado, A., De Pol-Holz, R., 2012b. Hydroclimate variability on centennial timescales in the low-elevation Atacama Desert over the last 2,500 years. Climate of the Past 8, 287306.CrossRefGoogle Scholar
Goebel, T., Waters, M.R., O'Rourke, D.H., 2008. The late Pleistocene dispersal of modern humans in the Americas. Science 319, 14971502.CrossRefGoogle ScholarPubMed
González, G., Dunai, T., Carrizo, D., Allmendinger, R., 2006. Young displacements on the Atacama Fault System, northern Chile from field observations and cosmogenic 21Ne concentrations. Tectonics 25, TC3006.CrossRefGoogle Scholar
Grosjean, M., Núñez, L., Cartajena, I., 2005. Palaeoindian occupation of the Atacama Desert, northern Chile. Journal of Quaternary Science 20, 643653.CrossRefGoogle Scholar
Haff, P.K., Werner, B.T., 1996. Dynamical processes on desert pavements and the healing of surficial disturbances. Quaternary Research 45, 3846.CrossRefGoogle Scholar
Hartley, A., Chong, G., 2002. Late Pliocene age for the Atacama Desert: implications for the Desertification of western South America. Geology 30, 4346.2.0.CO;2>CrossRefGoogle Scholar
Hartley, A.J., 2003. Andean uplift and climate change. Journal of the Geological Society 160, 710.CrossRefGoogle Scholar
Haug, E.W., Kraal, E.R., Sewall, J.O., Van Dijk, M., Diaz, G.C., 2010. Climatic and geomorphic interactions on alluvial fans in the Atacama Desert, Chile. Geomorphology 121, 184196. https://doi.org/10.1016/j.geomorph.2010.04.005CrossRefGoogle Scholar
Haynes, C.V., 2001. Geochronology and climate change of the Pleistocene–Holocene transition in the Darb el Arba'in Desert, Eastern Sahara. Geoarchaeology 16, 119141.3.0.CO;2-V>CrossRefGoogle Scholar
Herrera, K.A., 2018. La industria lítica bifacial del sitio en cantera Chipana-1. Conocimiento y técnica de los grupos humanos del Desierto de Atacama, norte de Chile al final del Pleistoceno., Paris Mono. ed. Archaeopress Publishing Ltd., Oxford.Google Scholar
Hoke, G.D., Isacks, B.L., Jordan, T.E., Blanco, N., Tomlinson, A.J., Ramezani, J., 2007. Geomorphic evidence for post-10 Ma uplift of the western flank of the central Andes 18°30′–22°S. Tectonics 26, TC5021.CrossRefGoogle Scholar
Houston, J., 2006. Variability of precipitation in the Atacama Desert: its causes and hydrological impact. International Journal of Climatology 26, 21812198.CrossRefGoogle Scholar
Janitzky, P., 1986a. Particle-size analysis. In: Singer, M.J., Janitzky, P. (Eds.), Field and Laboratory Procedures Used in a Soil Chronosequence Study. USGS Bulletin 1648, United States Government Printing Office, Washington D.C., pp. 1116.Google Scholar
Janitzky, P., 1986b. Organic carbon (Walkley-Black method). In: Singer, M.J., Janitzky, P. (Eds.), Field and Laboratory Procedures Used in a Soil Chronosequence Study. USGS Bulletin 1648, United States Government Printing Office, Washington D.C., pp. 3436.Google Scholar
Joly, D., Santoro, C.M., Gayo, E.M., Ugalde, P.C., March, R.J., Carmona, R., Marguerie, D., Latorre, C., 2017. Fuel management and human colonization of the Atacama Desert, northern Chile, during the Pleistocene–Holocene transition. Latin American Antiquity 28, 144160.CrossRefGoogle Scholar
Jordan, T.E., Kirk-Lawlor, N.E., Blanco, N., Rech, J.A., Cosentino, N.J., 2014. Landscape modification in response to repeated onset of hyperarid paleoclimate states since 14 Ma, Atacama Desert, Chile. Bulletin of the Geological Society of America 126, 10161046.CrossRefGoogle Scholar
Klimchouk, A., 1996. The dissolution and conversion of gypsum and anhydrite. International Journal of Speleology 25, 2136.CrossRefGoogle Scholar
Lamb, S., Davis, P., 2003. Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425, 792797.CrossRefGoogle ScholarPubMed
Latorre, C., Betancourt, J.L., Arroyo, M.T.K., 2006. Late Quaternary vegetation and climate history of a perennial river canyon in the Río Salado basin (22oS) of northern Chile. Quaternary Research 65, 405466.CrossRefGoogle Scholar
Latorre, C., Santoro, C.M., Ugalde, P.C., Gayo, E.M., Osorio, D., Salas-Egaña, C., De Pol-Holz, R., Joly, D., Rech, J.A., 2013. Late Pleistocene human occupation of the hyperarid core in the Atacama Desert, northern Chile. Quaternary Science Reviews 77, 1930.CrossRefGoogle Scholar
Leroi-Gourhan, A., Brézillon, M., 1966. L'habitation magdalénienne n 1 de Pincevent, près Montereau (Seien-et-Marne). Gallia-Préhistoire 9, 263385.CrossRefGoogle Scholar
Machette, M., 1986. Calcium and magnesium carbonates. In: Singer, M.J., Janitzky, P. (Eds.), Field and Laboratory Procedures Used in a Soil Chronosequence Study. USGS Bulletin 1648, United States Government Printing Office, Washington D.C., pp. 3033.Google Scholar
Matmon, A., Simhai, O., Amit, R., Haviv, I., Porat, N., McDonald, E., Benedetti, L., Finkel, R., 2009. Desert pavement-coated surfaces in extreme deserts present the longest-lived landforms on Earth. GSA Bulletin 121, 688697. https://doi.org/10.1130/B26422.1CrossRefGoogle Scholar
McFadden, L.D., McDonald, E.V., Wells, S.G., Anderson, K., Quade, J., Forman, S.L., 1998. The vesicular layer and carbonate collars of desert soils and pavements: formation, age and relation to climate change. Geomorphology 24, 101145.CrossRefGoogle Scholar
McFadden, L.D., Wells, S.G., Jercinovich, M.J., 1987. Influences of eolian and pedogenic processes on the origin and evolution of desert pavements. Geology 15, 504508.2.0.CO;2>CrossRefGoogle Scholar
Nester, P.L., Gayo, E., Latorre, C., Jordan, T.E., Blanco, N., 2007. Perennial stream discharge in the hyperarid Atacama Desert of northern Chile during the latest Pleistocene. Proceedings of the National Academy of Sciences 104, 1972419729.CrossRefGoogle ScholarPubMed
Núñez, L., Grosjean, M., Cartajena, I., 2002. Human occupations and climate change in the Puna de Atacama, Chile. Science 298, 821824.CrossRefGoogle ScholarPubMed
O'Neill, T.A., Balks, M.R., López-Martínez, J., 2013. Visual recovery of desert pavement surfaces following impacts from vehicle and foot traffic in the Ross Sea region of Antarctica. Antarctic Science 25, 514530.CrossRefGoogle Scholar
Osorio, D., Jackson, D., Ugalde, P.C., Latorre, C., De Pol-Holz, R., Santoro, C.M., 2011. Hakenasa Cave and its relevance for the peopling of the southern Andean Altiplano. Antiquity 85, 11941208.CrossRefGoogle Scholar
Owen, J.J., Dietrich, W.E., Nishiizumi, K., Chong, G., Amundson, R., 2013. Zebra stripes in the Atacama Desert: fossil evidence of overland flow. Geomorphology 182, 157172.CrossRefGoogle Scholar
Pelletier, J.D., Cline, M., Delong, S.B., 2007. Desert pavement dynamics: numerical modeling and field-based calibration. Earth Surface Processes and Landforms 1927, 19131927.CrossRefGoogle Scholar
Pfeiffer, M., Latorre, C., Santoro, C.M., Gayo, E.M., Rojas, R., Carrevedo, M.L., McRostie, V.B., et al. , 2018. Chronology, stratigraphy and hydrological modelling of extensive wetlands and paleolakes in the hyperarid core of the Atacama Desert during the late Quaternary. Quaternary Science Reviews 197, 224245.CrossRefGoogle Scholar
Placzek, C., Granger, D.E., Matmon, A., Quade, J., Ryb, U., 2014. Geomorphic process rates in the Central Atacama Desert, Chile: insights from cosmogenic nuclides and implications for the onset of hyperaridity. American Journal of Science 314, 14621512.CrossRefGoogle Scholar
Placzek, C., Quade, J., Patchett, P.J., 2006. Geochronology and stratigraphy of Late Pleistocene lake cycles on the Southern Bolivian Altiplano: implications for causes of tropical climate change. Geological Society of America Bulletin 118, 515532.CrossRefGoogle Scholar
PRAMAR-DICTUC, 2007. Estudio de Impacto Ambiental: Proyecto Minero Soronal. SQM S.A., Santiago.Google Scholar
Prose, D.V., Wilshire, H.G., 2000. The lasting effects of tank maneuvers on desert soils and intershrub Flora. Open File Report OF 00-512, U.S. Department of the Interior U.S. Geological Survey.CrossRefGoogle Scholar
Quade, J., 2001. Desert pavements and associated rock varnish in the Mojave Desert: how old can they be? Geology 29, 855858.2.0.CO;2>CrossRefGoogle Scholar
Quade, J., Rech, J., Betancourt, J., Latorre, C., Quade, B., Rylander, K., Fisher, T., 2008. Paleowetlands and regional climate change in the central Atacama Desert, northern Chile. Quaternary Research 69, 343360.CrossRefGoogle Scholar
Quezada, A., Varas, L., Vásquez, P., Sepúlveda, F., Cifuentes, J.L., 2018. Evidencias de un paleolago durante el Pleistoceno Tardío en el salar de Llamara, Desierto de Atacama, Región de Tarapacá, Chile. In: XV Congreso Geológico Chileno “Geociencias Hacia La Comunidad.” Concepción, pp. 16.Google Scholar
Rech, J.A., Currie, B.S., Michalski, G., Cowan, A.M., 2006. Neogene climate change and uplift in the Atacama Desert, Chile. Geology 34, 761764.CrossRefGoogle Scholar
Rech, J.A., Quade, J., Betancourt, J.L., 2002. Late Quaternary paleohydrology of the Central Atacama Desert (22–24°), Chile. Geological Society of America Bulletin 114, 334348.2.0.CO;2>CrossRefGoogle Scholar
Rech, J.A., Quade, J., Hart, W.S., 2003. Isotopic evidence for the source of Ca and S in soil gypsum, anhydrite and calcite in the Atacama Desert, Chile. Geochimica et Cosmochimica Acta 67, 575586.CrossRefGoogle Scholar
Reheis, M.C., Goodmacher, J.O., Harden, J.W., Rockwell, T.K., Shroba, R.R., Sowers, J.M., Taylor, E.M., 1995. Quaternary soils and dust deposition in southern Nevada and California. Geological Society of America Bulletin 107, 10031022.2.3.CO;2>CrossRefGoogle Scholar
Ritter, B., Stuart, F.M., Binnie, S.A., Gerdes, A., Wennrich, V., Dunai, T.J., 2018. Neogene fluvial landscape evolution in the hyperarid core of the Atacama Desert. Scientific Reports 8, 13952.CrossRefGoogle ScholarPubMed
Ritter, B., Wennrich, V., Medialdea, A., Brill, D., King, G., Schneiderwind, S., Niemann, K., et al. , 2019. Climatic fluctuations in the hyperarid core of the Atacama Desert during the past 215 ka. Scientific Reports 9, 5270.CrossRefGoogle ScholarPubMed
Santoro, C.M., 1989. Antiguos cazadores de la puna (9000-6000 a.C.). In: Hidalgo, J., Schiappacasse, V., Niemeyer, H., Aldunate, C., Solimano, I. (Eds.), Culturas de Chile. Prehistoria, Desde Sus Orígenes Hasta Los Albores de La Conquista. Editorial Andrés Bello, Santiago, pp. 3355.Google Scholar
Santoro, C.M., Gayo, E.M., Capriles, J.M., de Porras, M.E., Maldonado, A., Standen, V.G., Latorre, C., et al. , 2017. Continuities and discontinuities in the socio-environmental systems of the Atacama Desert during the last 13,000 years. Journal of Anthropological Archaeology 46, 2839.CrossRefGoogle Scholar
Santoro, C.M., Gayo, E.M., Capriles, J.M., Rivadeneira, M.M., Herrera, K.A., Mandakovic, V., Rallo, M., et al. , 2019. From the Pacific coast to the tropical forests: late Pleistocene networks of interaction in Pampa del Tamarugal, northern Chile Atacama Desert. Chungara, Revista de Antropología Chilena 51, 525.Google Scholar
Schoeneberger, P.J., Wysocki, E.C., Benham, E.C., Staff, S.S., 2012. Field book for describing and sampling soils, 3rd ed. Natural Resources Conservation Service, National Soil Survey Center, Lincoln.Google Scholar
Schröter, M., Ulrich, S., Kreft, J., Swift, J.B., Swinney, H.L., 2006. Mechanisms in the size segregation of a binary granular mixture. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 74, 114.CrossRefGoogle ScholarPubMed
Smallwood, A., Jennings, T.A., 2015. Clovis: On the Edge of a New Understanding. Texas A&M University Press, College Station.Google Scholar
Springer, M.E., 1958. Desert pavement and vesicular layer of some soils of the desert of the Lahontan Basin, Nevada. Soil Science Society of America, Proceedings 22, 6366.CrossRefGoogle Scholar
Summerfield, M.A., 1991. Global geomorphology. John Wiley & Sons, Inc., New York.Google Scholar
Thomas, D.S.G., 1989. Arid zone geomorphology. Halsted Press, New York.Google Scholar
Tierney, J.E., Pausata, F.S.R., deMenocal, P.B., 2017. Rainfall regimes of the Green Sahara. Science Advances 3, e1601503. https://doi.org/10.1126/sciadv.1601503.CrossRefGoogle ScholarPubMed
Valentine, G.A., Harrington, C.D., 2006. Clast size controls and longevity of Pleistocene desert pavements at Lathrop Wells and Red Cone volcanoes, southern Nevada. Geology 34, 533536. https://doi.org/10.1130/G22481.1CrossRefGoogle Scholar
Walk, J., Stauch, G., Reyers, M., Vásquez, P., Sepúlveda, F.A., Bartz, M., Hoffmeister, D., Brückner, H., Lehmkuhl, F., 2020. Gradients in climate, geology, and topography affecting coastal alluvial fan morphodynamics in hyperarid regions - the Atacama perspective. Global and Planetary Change 185, 102994.CrossRefGoogle Scholar
Wang, F., Michalski, G., Seo, J., Granger, D.E., Lifton, N., Caffee, M., 2015. Beryllium-10 concentrations in the hyper-arid soils in the Atacama Desert, Chile: Implications for arid soil formation rates and El Niño driven changes in Pliocene precipitation. Geochimica et Cosmochimica Acta 160, 227242.CrossRefGoogle Scholar
Ward, R.A., 1961. Desert pavement. The Compass of Sigma Gamma Epsilon 39, 38.Google Scholar
Wells, S.G., McFadden, L.D., Poths, J., Olinger, C.T., 1995. Cosmogenic 3He surface-exposure dating of stone pavements: implications for landscape evolution in deserts. Geology 23, 613616.2.3.CO;2>CrossRefGoogle Scholar
Wood, Y.A., Graham, R.C., Wells, S.G., 2002. Surface mosaic map unit development for a desert pavement surface. Journal of Arid Environments 52, 305317.CrossRefGoogle Scholar
Wood, Y.A., Graham, R.C., Wells, S.G., 2005. Surface control of desert pavement pedologic process and landscape function, Cima volcanic field, Mojave Desert, California. Catena 59, 205230.CrossRefGoogle Scholar
Workman, T.W., 2012. Paleowetlands and Fluvial Geomorphology of Quebrada Maní: Reconstructing Paleo-environments and Human Occupation int the Northern Atacama Desert. Unpublished Master's thesis, Master of Science, Miami University, Ohio.Google Scholar
Supplementary material: File

Ugalde et al. Supplementary Materials

Ugalde et al. Supplementary Materials 1

Download Ugalde et al. Supplementary Materials(File)
File 15.4 KB
Supplementary material: File

Ugalde et al. Supplementary Materials

Ugalde et al. Supplementary Materials 2

Download Ugalde et al. Supplementary Materials(File)
File 20.1 KB