Hostname: page-component-848d4c4894-89wxm Total loading time: 0 Render date: 2024-07-07T15:59:58.106Z Has data issue: false hasContentIssue false

Paleoproductivity evolution off central Chile from the Last Glacial Maximum to the Early Holocene

Published online by Cambridge University Press:  20 January 2017

Oscar E. Romero*
Affiliation:
Department of Geosciences, University Bremen, PO Box 330440, 28334 Bremen, Germany
Jung-Hyn Kim
Affiliation:
Department of Geosciences, University Bremen, PO Box 330440, 28334 Bremen, Germany
Dierk Hebbeln
Affiliation:
Department of Geosciences, University Bremen, PO Box 330440, 28334 Bremen, Germany
*
*Corresponding author. E-mail address:oromero@uni-bremen.de (O.E. Romero).

Abstract

A geochemical and paleontological reconstruction of paleoproductivity, upwelling intensity and sea surface temperature (SST) off central Chile at 35°S (GeoB3359-3) reveals marked changes from the Last Glacial Maximum (LGM) through the Early Holocene. Surface-water productivity was determined by the interaction between the atmospheric (the Southern Westerlies) and oceanographic (the Antarctic Circumpolar Current, ACC) systems from the LGM through early Termination I (TI). The northward shift of the climate zones during the LGM brought the ACC, as the main macronutrient source, closer to the GeoB3359-3, SST lowered, and surface water productivity and accumulation rates of biogenic components enhanced. With the poleward return of the Southern Westerlies and the ACC, the subtropical high-pressure system became the dominant atmospheric component southward till 35°S during the late TI and Early Holocene and caused surface water productivity to increase through enhanced upwelling.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hebbeln, D., (2001). Cruise participants PUCK, Report and preliminary results of R/V SONNE Cruise 156, Valparaíso (Chile)-Talcahuano (Chile), March 29–May 14, 2001. Berichte aus dem Fachbereich Geowissenschaften der Universität Bremen 182, 1195.Google Scholar
Hebbeln, D., Marchant, M., Wefer, G., (2002). Paleoproductivity in the southern Peru-Chile Current through the last 33,000 yr. Marine Geology 186, 487504.Google Scholar
Kim, J.-H., Schneider, R.R., Hebbeln, D., Mueller, P.J., Wefer, G., (2002). Last deglacial sea-surface temperature evolution in the Southeast Pacific compared to climate changes on the South American continent. Quaternary Science Reviews 21, 20852097.CrossRefGoogle Scholar
Lamy, F., Hebbeln, D., Wefer, G., (1999). High resolution marine record of climatic change in mid-latitude Chile during the last 28,000 years based on terrigenous sediment parameters. Quaternary Research 51, 8393.Google Scholar
Lamy, F., Rühlemann, C., Hebbeln, D., Wefer, G., (2002). High- and low-latitude climate control on the position of the southern Peru-Chile Current during the Holocene. Paleoceanography 17, 2(10.1029/2001PA000727, 1_1-1_10).Google Scholar
Lamy, F., Kaiser, J., Ninnemann, U., Hebbeln, D., Arz, H.W., Stoner, J., (2004). Antarctic timing of surface water changes off Chile and Patagonian ice sheet response. Science 304, 19591962.Google Scholar
Levitus, S., Boyer, T.B., (1994). World Ocean Atlas 1994 vol. 4, Temp, Nutrients, NOAA, U.S. Dept. of Commerce, Washington, DC.117 pp.Google Scholar
Mohtadi, M., Hebbeln, D., (2004). Mechanisms and variations of the paleoproductivity off northern Chie (24°–33°S) during the last 40,000 years. Paleoceanography 19, 2(PA2023,10.1029/2004PA001003, 1_1-1_15).Google Scholar
Mohtadi, M., Romero, O.E., Hebbeln, D., (2004). Changing marine productivity off northern Chile during the past 19000 years: a multivariable approach. Journal of Quaternary Science 19, 347360.Google Scholar
Mohtadi, M., Hebbeln, D., Marchant, M., (2005). Upwelling and productivity along the Peru-Chile Current derived from faunal and isotopic compositions of planktic foraminifera in surface sediments. Marine Geology 216, 107126.Google Scholar
Müller, P., Schneider, R.R., (1993). An automated leaching method for the determination of opal in sediments and particulate matter. Deep-Sea Research: Part 1. Oceanographic Research Papers 40, 425444.Google Scholar
Müller, P.J., Schneider, R.R., Ruhland, G., (1994). Late Quaternary PCO2 variations in the angola current: evidence from organic carbon δ13C and alkenone temperature. Zahn, R., Pedersen, T.F., Kaminski, M.A., Labeyrie, L. Carbon Cycling in the Glacial Ocean: Constraints on the Ocean's Role in Global Change NATO ASI Series. I, Global Environmental Change Springer-Verlag, Berlin. 343366.Google Scholar
Nadeau, M.-J., Schleicher, M., Grootes, P.M., Erlenkeuser, H., Gottdang, A., Mous, D.J.W., Sarnthein, J.M., Willkomm, H., (1997). The Leibniz-Labor AMS facility at the Christian-Albrechts-University, Kiel, Germany. Nuclear Instruments and Methods in Physics Research B123, 2230.Google Scholar
Romero, O.E., Hebbeln, D., (2003). Biogenic silica and diatom thanatocoenosis in surface sediments below the Peru-Chile Current: controlling mechanisms and relationship with productivity of surface waters. Marine Micropaleontology 48, 7190.Google Scholar
Romero, O.E., Hebbeln, D., Wefer, G., (2001). Temporal and spatial distribution in export production in the SE Pacific Ocean: evidence from siliceous plankton fluxes and surface sediment assemblages. Deep-Sea Research: Part 1. Oceanographic Research Papers 48, 26732697.Google Scholar
Shaffer, G., Salinas, S., Pizarro, O., Vega, A., Hormazabal, S., (1995). Currents in the deep Ocean off Chile (30°S). Deep-Sea Research. Part 1. Oceanographic Research Papers 42, 425436.Google Scholar
Strub, P.T., Mesías, J.M., Montecino, V., Rutllant, J., Salinas, S., (1998). Coastal Ocean Circulation off Western South America, Coastal Segment. Robinson, A.R., Brink, K.H. The Global Coastal Ocean, Regional Studies and Synthesis The Sea vol. 11, John Wiley and Sons, Inc., New York. 273313.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., von der Plicht, J., Spurk, M., (1998). INTCAL98 radiocarbon age calibration, 24,000-0 cal B.P.. Radiocarbon 40, 10411083.CrossRefGoogle Scholar
Thomas, A.C., (1999). Seasonal distributions of satellite-measured phytoplankton pigment concentration along the Chilean Coast. Journal of Geophysical Research 104, 2587725890.Google Scholar