Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-21T13:32:21.609Z Has data issue: false hasContentIssue false

Late Quaternary (Stage 2 and 3) Meltwater and Heinrich Events, Northwest Labrador Sea

Published online by Cambridge University Press:  20 January 2017

John T. Andrews
Affiliation:
INSTAAR and Department of Geological Sciences, Box 450, University of Colorado, Boulder, Colorado 80309
Helmut Erlenkeuser
Affiliation:
Institute of Nuclear Physics, C-14 Laboratory, Kiel University, Kiel, Germany
Katherine Tedesco
Affiliation:
INSTAAR and Department of Geological Sciences, Box 450, University of Colorado, Boulder, Colorado 80309
Ali E. Aksu
Affiliation:
Department of Geology, Memorial University of Newfoundland, St John's, Newfoundland, Canada A1B 3X5
A.J.Timothy Jull
Affiliation:
NSF-Arizona AMS Facility, University of Arizona, Tucson, Arizona 85721

Abstract

Two major meltwater events are documented in cores from the NW Labrador Sea. One occurred ca. 20,000 14C yr B.P. in association with deposition of a major detrital carbonate unit. Both prior to and after this event, δ18O values of near-surface planktonic foraminifera were 4.5%, indicating fully enriched glacial values. A younger event (ca. 14,000 14 C yr B.P.) is characterized by a dramatic change in δ18O from 4.5 to 2.0% and coincided with the retreat of ice from the outer SE Baffin Shelf, possibly into Hudson Strait. These meltwater events coincide with Heinrich (H) layers 1 and 2 from North Atlantic sediments. The 14,000 14C yr B.P. meltwater event indicates that the eastern margin of the Laurentide Ice Sheet also underwent rapid retreat at approximately the same time as other ice sheet margins around the NE North Atlantic. A third major detrital carbonate event at the base of HU87-033-009, possibly correlative with Heinrich layer 3, occurred ca. 33,960 ± 675 14 C yr B.P.; however, this is older than the accepted date for H-3 of 27,000 14C yr B.P. and may be H-4.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aksu, A. E., and Mudie, P. J. (1985). Late Quaternary stratigraphy and paleoecology of Northwest Labrador Sea. Marine Micropaleontology 9, 537557.Google Scholar
Andrews, J. T. Erlenkeuser, H. Evans, L. Briggs, W., and Jull, A. J. T. (1991a). Meltwater and Deglaciation SE Baffin Shelf (NE margin Laurentide Ice Sheet) between 13.5 and 8 ka: From stable O and C data. Paleoceanography 6, 621637.Google Scholar
Andrews, J. T. Jennings, A. E., MacLean, B. Mudie, P. Praeg, D., and Vilks, G. (1991b). The surficial geology of Canadian eastern Arctic and Polar continental shelves. Continental Shelf Research 11, 791819.CrossRefGoogle Scholar
Andrews, J. T., and Tedesco, K. (1992). Detrital carbonate-rich sediments, northwestern Labrador Sea: Implications for ice-sheet dynamics and iceberg rafting (Heinrich) events in the North Atlantic. Geology 20, 10871090.Google Scholar
Andrews, J. T. Tedesco, K. Briggs, W. M., and Evans, L. W. Sediments, sedimentation rates, and environments, SE Baffin Shelf and N W Labrador Sea 8 to 26 ka. Canadian Journal of Earth Sciences, in press.Google Scholar
Bard, E. Fairbanks, R. G. Hamelin, B., and Zindler, A. (1990). Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345, 405410.Google Scholar
Berger, W. H. (1990). The Younger Dryas cold spell—A quest for causes. Palaeogeography, Palaeoclimatology, Palaeoecology 89, 219237.Google Scholar
Birks, H. J. B., and Gordon, A. D. (1985). “Numerical Methods in Quaternary Pollen Analysis.” Academic Press, London.Google Scholar
Bond, G. Heinrich, H. Broecker, W. S. Labeyrie, L. McManus, J. Andrews, J. T. Huon, S. Jantschik, R. Clasen, S. Simet, C. Tedesco, K. Klas, M. Bonani, G., and Ivy, S. (1992). Evidence for massive discharges of icebergs into the glacial Northern Atlantic. Nature 360, 245249.Google Scholar
Bond, G. Broecker, W. S. Johnsen, S. McManus, J. Labeyrie, L. Jouzel, J., and Bonani, G. (1993). Correlations between climate records from North Atlantic Sediments and Greenland ice. Nature 365, 143147.CrossRefGoogle Scholar
Boulton, G. S. Smith, G. D. Jones, A. S., and Newsome, J. (1985). Glacial geology and glaciology of the last mid-latitude ice sheets. Journal of the Geological Society of London 142, 447474.Google Scholar
Boyle, E. A., and Keigwin, L. D. (1989). Late Quaternary Paleochemistry of High-Latitude Surface Waters. Palaeogeography, Palaeocli-matology, Palaeoecology 73, 85106.Google Scholar
Broecker, W. S. Bond, G. McManus, J. Klas, M., and Clark, E. (1992). Origin of the Northern Atlantic’s Heinrich events. Climatic Dynamics 6, 265273.CrossRefGoogle Scholar
Broecker, W. S., and Denton, G. H. (1989). The role of oceanatmosphere reorganizations in glacial cycles. Geochemica et Cosmochimica Acta 53, 24652501.Google Scholar
Dansgaard, W. White, J. W. C., and Johnsen, S. J. (1989). The abrupt termination of the Younger Dryas climate event. Nature 339, 532534.Google Scholar
de Vernal, A. Bilodeau, G. Hillaire-Marcel, C., and Kassou, N. (1992). Quantitative assessment of carbonate dissolution in marine sediments from foraminifer linings vs. shell ratios: Davis Strait, Northwest North Atlantic. Geology 20, 527530.Google Scholar
Dickenson, R. R. Meincke, J. Malmberg, S., and Lee, A. (1988). The “Great Salinity Anomaly” in the northern North Atlantic 1968-1982. Progress in Oceanography 20, 103151.CrossRefGoogle Scholar
Fairbanks, R. G. Charles, C. D., and Wright, J. D. (1991). Origin of global meltwater pulses. In “Radiocarbon after Four Decades” (Taylor, R. E. et al., Eds.), pp. 473500. Springer-Verlag, Berlin.Google Scholar
Fillon, R. H. (1985). Northwest Labrador Sea stratigraphy, sand input and paleoceanography during the last 160,000 years. In “Quaternary Environments: Eastern Canadian Arctic, Baffin Bay, and Western Greenland” (Andrews, J. T., Ed.), pp. 181209. Allen and Unwin, Boston.Google Scholar
Fillon, R. H., and Aksu, A. (1985). Evidence for subpolar influence in the Labrador Sea and Baffin Bay during marine isotope stage 2. In“Quaternary Environments: Eastern Canadian Arctic, Baffin Bay, and Western Greenland” (Andrews, J. T., Ed.), pp. 248262. Allen and Unwin, Boston.Google Scholar
Fillon, R. H., and Duplessy, J. C. (1980). Labrador Sea bio-, tephro-, oxygen isotopic stratigraphy and Late Quaternary paleoceanographic trends. Canadian Journal Earth of Sciences 17, 831854.CrossRefGoogle Scholar
Fillon, R. H., and Williams, D. F. (1984). Dynamics of meltwater discharge from Northern Hemisphere ice sheets during the last deglaciation. Nature 310, 674677.Google Scholar
Fisher, D. A. Reeh, N., and Langley, K. (1985). Objective reconstruction of the late Wisconsinan Laurentide Ice Sheet and the significance of deformable beds. Geographie physique et Quaternaire 39, 229238.Google Scholar
Fulton, R. J. (Ed.). (1989). Quaternary Geology of Canada. In “Quaternary Geology of Canada and Greenland.” Geological Survey of Canada, Ottawa, Canada.Google Scholar
Funder, S. (1989). Quaternary geology of the ice-free areas and adjacent shelves of Greenland. In “Quaternary Geology of Canada and Greenland” (Fulton, R. J., Ed.), pp. 743792. Geological Survey of Canada, Ottawa, Canada.Google Scholar
Grousset, F. E. Labeyrie, L Sinko, J. A. Cremer, M. Bond, G. Duprat, J. Cortijo, E., and Huon, S. (1993). Patterns of ice-rafted detritus in the glacial North Atlantic (40-55°N). Paleoceanography 8, 175192.CrossRefGoogle Scholar
Heinrich, H. (1988). Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quaternary Research 29, 143152.Google Scholar
Hillaire-Marcel, C., and de Vernal, A. (1989). Isotopic and palynological records of the late Pleistocene in Eastern Canada and adjacent ocean basins. Geographic physique et Quaternaire 43, 263290.Google Scholar
Hillaire-Marcel, C. de Vernal, A. Bilodeau, G., and Wu, G. Isotope stratigraphy, sedimentation rates, deep circulation and carbonate events in the Labrador Sea during the last 200 kyr. Canadian Journal of Earth Sciences, in press.Google Scholar
Hughes, T. (1987). Ice dynamics and deglaciation models when ice sheets collapsed. In “North America and Adjacent Oceans during the Last Deglaciation” (Ruddiman, W. F. and Wright, H. E. J., Eds.), Geology of North America, DNAG Vol. K-3, pp. 183220. Geological Society of America, Boulder.Google Scholar
Jenkins, A. The melting of continential ice in the ocean and its impact on surface and bottom waters. In “Ice in the Climate System” (Peltier, W. R., Ed.). NATO Advanced Workshop, Springer-Verlag, in press.Google Scholar
Johnsen, S. J. Clausen, H. B. Dansgaard, W. Fuhrer, K. Gundestrup, N. Hammer, C. U. Iversen, P. Jouzel, J. Stauffer, B., and Steffensen, J. P. (1992). Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, 311313.Google Scholar
Jones, G. A., and Keigwin, L. D. (1988). Evidence from the Fram Strait (78 N) for early deglaciation. Nature 336, 5659.Google Scholar
Jones, G. A. Keigwin, L. D., and Lehman, S. J. (1991). Deglacial Meltwater Discharge, North Atlantic Deep Circulation, and Abrupt Climate Change. Journal of Geophysical Research 96, 16,81116,826.Google Scholar
Kaufman, D. S., and Williams, K. M. (1992). “Radiocarbon Date List. VII. Baffin Island, N.W.T., Canada.” Occasional Paper 48, 1NSTAAR, University of Colorado, Boulder.Google Scholar
Keigwin, L. D. Jones, G. A., and Lehman, S. J. (1991). Deglacial Meltwater Discharge, North Atlantic Deep Circulation and Abrupt Climatic Change. Journal of Geophysical Research 96, 1681116826.Google Scholar
Lehman, S. J. Jones, G. A. Keigwin, L. D. Andersen, E. S. Butenko, G., and Ostmo, S.-R. (1991). Initiation of Fennoscandian ice-sheet retreat during the last deglaciation. Nature 349, 513515.Google Scholar
Lehman, S. J., and Keigwin, L. D. (1992). Sudden changes in North Atlantic circulation during the last deglaciation. Nature 356, 757762.Google Scholar
Linick, T. W. Jull, A. J. T. Toolin, L. J., and Donahue, D. J. (1986). Operation of the NSF Arizona Accelerator Facility for Radioisotope Analysis results from selective collaborative research projects. Radiocarbon 28, 522533.Google Scholar
Miller, G. H., and Kaufman, D. S. (1990). Rapid fluctuations of the Laurentide Ice Sheet at the mouth of Hudson Strait: New evidence for ocean/ice-sheet interactions as control on the Younger Dryas. Paleoceanography 5, 907919.Google Scholar
Mysak, L. A., and Power, S. B. (1991). Greenland Sea ice and salinity anomalies and interdecadal climate variability. Climatic Bulletin 25, 8191.Google Scholar
Pfirman, S. L., and Solheim, A. (1989). Subglacial meltwater discharge in the open-marine tidewater environment: Observations from Nordaustlandet, Svalbard archipelago. Marine Geology 86, 265281.Google Scholar
Piper, D. J. W. Mudie, P. J. Fader, G. B. Josenhans, H. W., MacLean, B., and Vilks, G. (1991). Quaternary Geology. In “Geology of the Continental Margin of Eastern Canada” (Keen, M. J. and Williams, L., Eds.), DNAG Vol. 1-1, pp. 475607. Geological Society of America, Boulder, CO.Google Scholar
Ruddiman, W. E. (1987). Northern oceans. In “North America and adjacent oceans during the last deglaciation” (Ruddiman, W. F. and Wright, E. Jr., Eds.), DNAG Vol. K-3, pp. 137154. Geological Society of America, Boulder, CO.Google Scholar
Sandgren, P., and Thompson, R. (1990). Mineral magnetic characteristics of podzolic soils developed on sand dunes in the Lake Gosciaz catchment, central Poland. Physics of the Earth and Planetary Interiors 60, 297313.Google Scholar
Slota, P. J. Jull, A. J. T. Linick, T. W., and Toolin, L. J. (1987). Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29, 303306.Google Scholar
Solheim, A. (1991). The depositional environment of surging sub-polar tidewater glaciers. Norsk Polarinstitutt Skrifter 194.Google Scholar
Stocker, T., and Wright, D. (1991). Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes. Nature 351, 729732.Google Scholar
Stocker, T. F. Wright, D. G., and Broecker, W. S. (1992). The influence of high-latitude surface forcing on the global thermohaline circulation. Paleoceanography 7, 529541.Google Scholar
Stravers, J. A., and Miller, G. H. (1992). Late glacial ice margins and deglacial chronology for Hudson Strait, Eastern Canadian Arctic. Canadian Journal of Earth Sciences 29, 10001017.CrossRefGoogle Scholar
Tedesco, K. (1993). “Late Quaternary paleoceanography of the Northwest Labrador Sea.” Unpublished MSc, University of Colorado, Boulder.Google Scholar
Thompson, R., and Clark, R. M. (1989). Sequence slotting for stratigraphic correlation between cores: Theory and practice. Journal of Paleolimnology 2, 173184.Google Scholar
Weinelt, M. S. Samthein, M. Vogelsand, E., and Erlenkeuser, H. (1991). Early decay of the Barents Shelf Ice Sheet-spread of stable isotope signals across the eastern Norwegian Sea. Norsk Geologisk Tidsskrift 71, 137140.Google Scholar
Williams, D. F., and Fillon, R. H. (1986). Meltwater influences and palaeocirculation changes in the North Atlantic during the last glacial termination. In “North Atlantic Palaeoceanography” (Summerhayes, C. P. and Shackelton, N. J., Eds.), Special Publication 21, pp. 175180. Geological Society of London, London.Google Scholar