Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T08:20:29.064Z Has data issue: false hasContentIssue false

Late- and Postglacial Sea-Level Change and Paleoenvironments in the Oder Estuary, Southern Baltic Sea

Published online by Cambridge University Press:  20 January 2017

Anne Müller*
Affiliation:
Department of Geology, Australian National University, Canberra, ACT, 0200, Australia, E-mail: amuller@geology.anu.edu.au

Abstract

Knowledge of sea-level change in the southern Baltic Sea region is important for understanding the variations in late Pleistocene and Holocene sea-level change across northern Europe. These variations are a consequence of the response of the Earth's crust to the deglaciation of Fennoscandia and of the water added to the oceans from the melting of all Pleistocene ice sheets. The sedimentological and geochemical composition of five sediment cores from the lagoonal Oder Estuary offers new observational evidence for sea-level change and coastal development in the southern Baltic Sea region. The combined use of several geochemical proxies (organic carbon, nitrogen, calcium carbonate and biogenic opal contents, Corg/S and Corg/N ratios, δ13C values of organic matter, and δ15N values) is a new approach for the study area. The chemical evidence of this multiproxy approach allows clear identification of several stages in the development of the lagoonal environment: postglacial lake stages with sandy sedimentation during the Older Dryas and the Allerød stades, lacustrine phases with high autochthonous productivity during the Atlantic stade, terrestrial stages with peat formation at the beginning of the Subboreal stade, sedimentation as a result of marine transgression, and brackish sedimentation after the formation of sand spits and barrier islands during the Subatlantic stade. The stages are the result of regional sea-level change owing to complex shoreline development. They support the tentative sea-level curve proposed nearly 20 years ago for the region. In addition, changes in Oder River input in response to climate conditions is monitored. Whereas high terrigenous input of organic matter from the Oder River occurred during periods of humid climate during the Allerød, Atlantic, and Subatlantic stades, Oder River discharge decreased with drier and cooler climate conditions during the Subboreal stade. Furthermore, the geochemical evidence points to local anomalies such as the significance of river input and additional sulfate supply into the Oder lagoon for the composition of the sediments. Overall, the results provide a framework for future studies, which would allow for a more detailed comparison with other, similar environments.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, B.G., (1981). Late Weichselian ice sheets in Eurasia and Greenland.Denton, G.H., Hughes, T.J. The Last Great Ice Sheets, Wiley, New York.165.Google Scholar
Berner, R.A., Raiswell, R., (1983). Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: A new theory. Geochimica et Cosmochimica Acta, 7, 845862.Google Scholar
Björck, S., (1995). A review of the history of the Baltic Sea 13.0–8.0 ka B.P. Quaternary International, 27, 1940.CrossRefGoogle Scholar
Correns, M., (1972). Beiträge zur Hydrographie des Kleinen Haffs und des Peenestroms.. Humboldt-Universität, Berlin.Google Scholar
DeMaster, J., (1981). The supply and accumulation of silica in the marine environment. Geochimica et Cosmochimica Acta, 45, 17151732.CrossRefGoogle Scholar
Duphorn, K., Kliewe, H., Niedermeyer, R.-O., Janke, W., Werner, F., (1995). Sammlung Geologischer Führer Band 88 Die Deutsche Ostseeküste.. Gebrüder Bornträger, Berlin/Stuttgart.Google Scholar
Gingele, F.X., Leipe, T., (1997). Clay mineral assemblages in the western Baltic Sea: Recent distribution and relation to sedimentary units. Marine Geology, 140, 97115.CrossRefGoogle Scholar
Ignatius, H., Axberg, S., Niemistö, L., Winterhalter, B., (1981). Quaternary geology of the Baltic Sea.Voipio, A. The Baltic Sea, Kluwer, Amsterdam.54104.Google Scholar
Janke, W., Kliewe, H., Sterr, H., (1993). Holozäne Genese der Boddenküste Mecklenburg-Vorpommerns und deren künftige klimabedingte Entwicklung.Schellnhuber, H.-J., Sterr, H. Klimaänderung und Küste, Springer, Berlin/Heidelberg.137152.CrossRefGoogle Scholar
Kliewe, H.(1995). Zeit- und Klimamarken in Sedimenten der südlichen Ostsee und ihrer Vorpommerschen Boddenküste.. Journal of Coastal Research17, 181186. [Special issues: “Holocene Cycles: Climate, Sea Levels, and Sedimentation” Finkl, O. W., Ed. ].Google Scholar
Kliewe, H., Janke, W., (1978). Zur Stratigraphie und Entwicklung des nordöstlichen Küstenraumes der DDR. Petermanns Geographische Mitteilungen, 122, 8191.Google Scholar
Kliewe, H., Janke, W., (1982). Der holozäne Wasserspiegelanstieg der Ostsee im nordöstlichen Küstengebiet der DDR. Petermanns Geographische Mitteilungen, 135, 114.Google Scholar
Kliewe, H., Janke, W., (1991). Holozäner Küstenausgleich im südlichen Ostseegebiet bei besonderer Berücksichtigung der Boddenausgleichsküste Vorpommerns. Petermanns Geographische Mitteilungen, 1, 114.Google Scholar
Kolp, O., (1983). Die schrittweise Verlagerung der Odermündung von der Bornholmulde bis in die Oderbucht infolge holozäner Wasserstandsänderungen im südlichen Ostseeraum. Petermanns Geographische Mitteilungen, 127, 7387.Google Scholar
Lambeck, K., Johnston, P., Nakada, M., (1990). Holocene glacial rebound and sea-level change in NW Europe. Geophysical Journal International, 103, 451468.CrossRefGoogle Scholar
Lambeck, K., Smithers, C., Johnston, P., (1998). Sea-level change, glacial rebound and mantle viscosity for northern Europe. Geophysical Journal International, 134, 102144.CrossRefGoogle Scholar
Lange, E., Jeschke, L., Knapp, H.D., (1986). Ralswiek und Rügen. Landschaftsentwicklung und Siedlungsgeschichte der Ostseeinsel. Teil 1. Die Landschaftsgeschichte der Insel Rügen seit dem Spätglazial. Schriften zur Ur- und Frühgeschichte, 38, 175.Google Scholar
Mariotti, A., (1983). Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature, 303, 680683.CrossRefGoogle Scholar
Messner, U., von Oertzen, J.A., (1991). Long-term changes in the vertical distribution of makrophytobenthic communities in the Greifswalder Bodden. Acta Ichthyologica et Piscatoria, 21, 135143.CrossRefGoogle Scholar
Mortlock, R.D., Froelich, M.A., (1989). A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Research, 36, 14151426.CrossRefGoogle Scholar
Müller, A., (1999). Geochemische Charakteristika des Greifswalder Boddens (südliche Ostsee) als Indikatoren für Sedimentationsgeschichte und Paläomilieu. Senckenbergiana maritima, 30, 115.CrossRefGoogle Scholar
Müller, A., Janke, W., Lampe, R., (1996). Zur Sedimentationsgeschichte des Oderhaffs. Bodden, 3, 167172.Google Scholar
Müller, A., Hoffmann, K., (1998). Spät- und postglaziale Sedimentationsdynamik und Korngrößenverteilung im Oderhaff, südliche Ostsee. Leipziger Geowissenschaften, 6, 199209.Google Scholar
Müller, A., Mathesius, U., (1999). The palaeoenvironments of coastal lagoons in the southern Baltic Sea, I. The application of sedimentary Corg/N ratios as source indicators of organic matter. Palaeogeography, Palaeoclimatology, Palaeoecology, 145, 116.CrossRefGoogle Scholar
Müller, A., Voss, M., (1999). The palaeoenvironments of coastal lagoons in the southern Baltic Sea, II. δ13C and δ15N ratios of organic matter—sources and sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 145, 1732.CrossRefGoogle Scholar
Müller, A., Opdyke, B.N., (2000). Glacial–interglacial changes in nutrient utilization and paleoproductivity in the Indonesian throughflow sensitive Timor Trough, easternmost Indian Ocean. Paleoceanography, 15, 8594.CrossRefGoogle Scholar
Neumann, T., Leipe, T., Shimmield, G., (1998). Heavy–metal enrichment in surficial sediments in the Oder River discharge area: Source or sink for heavy metals. Applied Geochemistry, 13, 329337.CrossRefGoogle Scholar
Reinicke, R., (1989). Der Greifswalder Bodden—Geographisch-geologischer überblick, Morphogenese und Küstendynamik. Meer und Museum, 5, 39.Google Scholar
Ruttenberg, K.C., Goñi, M.A., (1997). Phosphorus distribution, C–N–P ratios, and δ13Coc in arctic, temperate, and tropical coastal sediments—tools for characterizing bulk sedimentary organic matter. Marine Geology, 139, 123145.CrossRefGoogle Scholar
Schellnhuber, H.-J., Sterr, H., (1993). Klimaänderung und Küste. Springer, Berlin/Heidelberg.CrossRefGoogle Scholar
Siegert, M.J., Dowdeswell, J.A., Melles, M., (1999). Late Weichselian glaciation of the Russian Arctic. Quaternary Research, 52, 273285.CrossRefGoogle Scholar
Strahl, J., (1996). Pollenanalytische Untersuchung eines Vibrokernprofils aus dem NW-Teil des Greifswalder Boddens, südliche Ostsee. Senckenbergiana maritima, 27, 4956.Google Scholar
Thornton, S.F., McManus, J., (1994). Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in esturaine systems: Evidence from the Tay Estuary, Scotland. Estuarine, Coastal and Shelf Science, 38, 219233.CrossRefGoogle Scholar
Zonneveld, J.I.S., (1973). Some notes on the last deglaciation in Northern Europe compared with Canadian conditions. Arctic Alpine Research, 5, 223237.CrossRefGoogle Scholar