Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-22T02:45:31.248Z Has data issue: false hasContentIssue false

Holocene stratigraphic evolution of saline lakes in Nhecolândia, southern Pantanal wetlands (Brazil)

Published online by Cambridge University Press:  24 August 2017

Michael M. McGlue*
Affiliation:
Department of Earth and Environmental Sciences, University of Kentucky, Lexington, Kentucky 40506, USA
Renato Lada Guerreiro
Affiliation:
Instituto Federal do Paraná–Assis Chateaubriand Campus, Assis Chateaubriand, Paraná, CEP 85935-000, Brazil Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista–Rio Claro, São Paulo, CEP 13506-900, Brazil
Ivan Bergier
Affiliation:
Laboratory of Biomass Conversion, Embrapa Pantanal, Corumbá, Mato Grosso do Sul, CEP 79320-900, Brazil
Aguinaldo Silva
Affiliation:
Departamento de Geografia, Universidade Federal de Mato Grosso do Sul–CPAN, 1270 Avenida Rio Branco, Corumbá, Mato Grosso do Sul, CEP 79304-902, Brazil
Fabiano N. Pupim
Affiliation:
Department of Environmental Sciences, Universidade Federal de São Paulo, Diadema, SP, CEP 09913-030, Brazil
Victoria Oberc
Affiliation:
Department of Earth and Environmental Sciences, University of Kentucky, Lexington, Kentucky 40506, USA
Mario L. Assine
Affiliation:
Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista–Rio Claro, São Paulo, CEP 13506-900, Brazil
*
* Corresponding author at: Department of Earth and Environmental Sciences, 106 Slone Research Bldg., University of Kentucky, Lexington, Kentucky 40506, USA. E-mail address: michael.mcglue@uky.edu (M.M. McGlue).

Abstract

Nhecolândia is a fossil lobe of the Taquari River megafan and a prominent geomorphic subunit of the Pantanal wetlands because of the presence of >10,000 small lakes. We investigated the stratigraphic records of three saline lakes from Nhecolândia to explore their potential as Quaternary hydroclimate archives. Radiocarbon data indicate that accumulation at two lakes was approximately continuous in the late Holocene, and chemostratigraphic variability suggests sensitivity to environmental change with multicentennial resolution. A basal sandy unit and an upper muddy unit comprise the shallow stratigraphy of each lake. A pronounced change in depositional environment from freshwater wetlands to saline lakes at ~3300–3200 cal yr BP best explains the lithofacies transition. Ephemeral freshwater wetlands formed on the abandoned megafan lobe, which was molded by deflation in the arid early Holocene. Wind-scouring of the megafan lobe generated topographically closed depressions with complex marginal sand ridges, which allowed permanent lakes to evolve when rainfall increased in the late Holocene. The lakes became highly saline and alkaline after ~910 cal yr BP, which influences biogeochemistry and aquatic ecology. The results hold implications for understanding the response of the southern Pantanal to climate change, as well as the development of pans in tropical megafan settings.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ab’Saber, A.N., 1988. O Pantanal Mato-Grossense ea teoria dos refúgios. Revista Brasileira de Geografia 50, 957.Google Scholar
Almeida, T.I.R.D., Paranhos Filho, A.C., Rocha, M.M.D., Souza, G.F.D., Sígolo, J.B., Bertolo, R.A., 2009. Estudo sobre as diferenças de altimetria do nível da água de lagoas salinas e hipossalinas no Pantanal da Nhecolândia: um indicativo de funcionamento do mega sistema lacustre. Geociências (São Paulo) 28, 401415.Google Scholar
Alonso-Zarza, A.M., Wright, V.P., 2010. Palustrine carbonates. Developments in Sedimentology 61, 103131.CrossRefGoogle Scholar
Araujo, A.G.M., Neves, W.A., Piló, L.B., Atui, J.P.V., 2005. Holocene dryness and human occupation in Brazil during the “Archaic Gap.”. Quaternary Research 64, 298307.CrossRefGoogle Scholar
Assine, M.L., 2005. River avulsions on the Taquari megafan, Pantanal wetland, Brazil. Geomorphology 70, 357371.CrossRefGoogle Scholar
Assine, M.L., Corradini, F.A., Pupim, F.N., McGlue, M.M., 2014. Channel arrangements and depositional styles in the São Lourenço fluvial megafan, Brazilian Pantanal wetland. Sedimentary Geology 301, 172184.Google Scholar
Assine, M.L., Macedo, H.A., Stevaux, J.C., Bergier, I., Padovani, C.R., Silva, A., 2015a. Avulsive rivers in the hydrology of the Pantanal wetland. In: Bergier, I., Assine, M.L. (Eds.), Dynamics of the Pantanal Wetland in South America. Springer International, Cham, Switzerland, pp. 83110.Google Scholar
Assine, M.L., Merino, E.R., Pupim, F.N., Azevedo Macedo, H., Santos, M.G.M., 2015b. The Quaternary alluvial systems tract of the Pantanal Basin, Brazil. Brazilian Journal of Geology 45, 475489.Google Scholar
Assine, M.L., Merino, E.R., Pupim, F.N., Warren, L.V., Guerreiro, R.L., McGlue, M.M., 2015c. Geology and geomorphology of the Pantanal Basin. In: Bergier, I., Assine, M.L. (Eds.), Dynamics of the Pantanal Wetland in South America. Springer International, Cham, Switzerland, pp. 2350.CrossRefGoogle Scholar
Assine, M.L., Silva, A., 2009. Contrasting fluvial styles of the Paraguay River in the northwestern border of the Pantanal wetland, Brazil. Geomorphology 113, 189199.Google Scholar
Assine, M.L., Soares, P.C., 2004. Quaternary of the Pantanal, west-central Brazil. Quaternary International 114, 2334.CrossRefGoogle Scholar
Baker, P.A., Fritz, S.C., 2015. Nature and causes of Quaternary climate variation of tropical South America. Quaternary Science Reviews 124, 3147.Google Scholar
Barbiero, L., Berger, G., Rezende-Filho, A.T., Muenier, J.-F., Martins-Silva, E.R., Furian, S., 2016. Organic control of dioctahedral and trioctahedral clay formation in an alkaline soil system in the Pantanal wetlands of Nhecolândia, Brazil. PlosOne 11: e0159972.CrossRefGoogle Scholar
Barbiéro, L., de Queiroz Neto, J.P., Ciornei, G., Sakamoto, A.Y., Capellari, B., Fernandes, E., Valles, V., 2002. Geochemistry of water and ground water in the Nhecolândia, Pantanal of Mato Grosso, Brazil: variability and associated processes. Wetlands 22, 528540.Google Scholar
Barbiero, L., Rezende Filho, A., Furquim, S.A.C., Furian, S., Sakamoto, A.Y., Valles, V., Graham, R.C., Fort, M., Ferreira, R.P.D., Neto, J.Q., 2008. Soil morphological control on saline and freshwater lake hydrogeochemistry in the Pantanal of Nhecolândia, Brazil. Geoderma 148, 91106.CrossRefGoogle Scholar
Bergier, I., Krusche, A., Guérin, F., 2014. Alkaline lake dynamics in the Nhecolândia landscape. In: Bergier, I., Assine, M.L. (Eds.), Dynamics of the Pantanal Wetland in South America. Springer International, Cham, Switzerland, pp. 145161.Google Scholar
Bird, B.W., Abbott, M.B., Rodbell, D.T., Vuille, M., 2011. Holocene tropical South American hydroclimate revealed from a decadally resolved lake sediment δ18O record. Earth and Planetary Science Letters 310, 192202.Google Scholar
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.Google Scholar
Buehler, H.A., Weissmann, G.S., Scuderi, L.A., Hartley, A.J., 2011. Spatial and temporal evolution of an avulsion on the Taquari River distributive fluvial system from satellite image analysis. Journal of Sedimentary Research 81, 630640.CrossRefGoogle Scholar
Clapperton, C.M., 1993. Nature of environmental changes in South America at the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 101, 189208.CrossRefGoogle Scholar
Cobos-Vasconcelos, D., García-Cruz, E.L., Franco-Morgado, M., González-Sánchez, A., 2016. Short-term evaluation of the photosynthetic activity of an alkaliphilic microalgae consortium in a novel tubular closed photobioreactor. Journal of Applied Phycology 28, 795802.CrossRefGoogle Scholar
Cohen, A.S., 2003. Paleolimnology: The History and Evolution of Lake Systems. Oxford University Press, Oxford.Google Scholar
Cohen, A.S., McGlue, M.M., Ellis, G.S., Zani, H., Swarzenski, P.W., Assine, M.L., Silva, A., 2015. Lake formation, characteristics, and evolution in retroarc deposystems: a synthesis of the modern Andes orogen and its associated basins. In: DeCelles, P.G., Ducea, M.N., Carrapa, B., Kapp, P.A. (Eds.), Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile. Geological Society of America Memoir 212. Geological Society of America, Boulder, CO, pp. 309335.Google Scholar
Costa, M.P.F., Telmer, K.H., Evans, T.L., Almeida, T.I.R., Diakun, M.T., 2015. The lakes of the Pantanal: inventory, distribution, geochemistry, and surrounding landscape. Wetlands Ecology and Management 23, 1939.CrossRefGoogle Scholar
Cruz, F.W., Burns, S.J., Karmann, I., Sharp, W.D., Vuille, M., Cardoso, A.O., Ferrari, J.A., Dias, P.L.S., Viana, O., 2005. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434, 6366.Google Scholar
Cruz, F.W., Vuille, M., Burns, S.J., Wang, X., Cheng, H., Werner, M., Edwards, R.L., Karmann, I., Auler, A.S., Nguyen, H., 2009. Orbitally driven east–west antiphasing of South American precipitation. Nature Geoscience 2, 210214.CrossRefGoogle Scholar
Debrot, A.O., Soest, R.W.M., 2001. First records of the freshwater sponges Corvoheteromeyenia heterosclera and (Porifera: Spongillidae) from Curacao with species descriptions and data from transplantation experiments. Caribbean Journal of Science 334, 8894.Google Scholar
Deocampo, D.M., 2015. Authigenic clay minerals in lacustrine mudstones. Geological Society of America, Special Papers 515, 49–64.Google Scholar
Dunagan, S.P., Turner, C.E., 2004. Regional paleohydrologic and paleoclimatic settings of wetland/lacustrine depositional systems in the Morrison Formation (Upper Jurassic), Western Interior, USA. Sedimentary Geology 167, 269296.Google Scholar
Evans, T.L., Costa, M., 2013. Landcover classification of the Lower Nhecolândia subregion of the Brazilian Pantanal wetlands using ALOS/PALSAR, RADARSAT-2 and ENVISAT/ASAR imagery. Remote Sensing of Environment 128, 118137.Google Scholar
Fornace, K.L., Whitney, B.S., Galy, V., Hughen, K.A., Mayle, F.E., 2016. Late Quaternary environmental change in the interior South American tropics: new insight from leaf wax stable isotopes. Earth and Planetary Science Letters 438, 7585.Google Scholar
Freytet, P., Plaziat, J.C., 1982. Continental Carbonate Sedimentation and Pedogenesis – Late Cretaceous and Early Tertiary of Southern France. Contributions to Sedimentology 12. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, Germany.Google Scholar
Furian, S., Martins, E.R.C., Parizotto, T.M., Rezende-Filho, A.T., Victoria, R.L., Barbiero, L., 2013. Chemical diversity and spatial variability in myriad lakes in Nhecolândia in the Pantanal wetlands of Brazil. Limnology and Oceanography 58, 22492261.CrossRefGoogle Scholar
Furquim, S.A.C., Barbiero, L., Graham, R.C., de Queiroz Neto, J.P., Ferreira, R.P.D., Furian, S., 2010a. Neoformation of micas in soils surrounding an alkaline-saline lake of Pantanal wetland, Brazil. Geoderma 158, 331342.CrossRefGoogle Scholar
Furquim, S.A.C., Graham, R.C., Barbiéro, L., Neto, J.Q., Vidal-Torrado, P., 2010b. Soil mineral genesis and distribution in a saline lake landscape of the Pantanal wetland, Brazil. Geoderma 154, 518528.CrossRefGoogle Scholar
Gierlowski-Kordesch, E., Finkelstein, D.B., Holland, J.J.T., Kallini, K.D., 2013. Carbonate lake deposits associated with distal siliciclastic perennial-river systems. Journal of Sedimentary Research 83, 11141129.Google Scholar
Godoy, J.M., Padovani, C.R., Guimarães, J.R., Pereira, J.C., Vieira, L.M., Carvalho, Z.L., Galdino, S., 2002. Evaluation of the siltation of River Taquari, Pantanal, Brazil, through 210Pb geochronology of floodplain lake sediments. Journal of the Brazilian Chemical Society 13, 7177.Google Scholar
Goudie, A.S., Wells, G.L., 1995. The nature, distribution and formation of pans in arid zones. Earth-Science Reviews 38, 169.Google Scholar
Hamilton, S.K., Sippel, S.J., Calheiros, D.F., Melack, J.M., 1997. An anoxic event and other biogeochemical effects of the Pantanal wetland on the Paraguay River. Limnology and Oceanography 42, 257272.Google Scholar
Hamilton, S.K., Sippel, S.J., Melack, J.M., 2002. Comparison of inundation patterns among major South American floodplains. Journal of Geophysical Research: Atmospheres 107, LBA 5-1LBA 5-14.Google Scholar
Hillyer, R., Valencia, B.G., Bush, M.B., Silman, M.R., Steinitz-Kannan, M., 2009. A 24,700-yr paleolimnological history from the Peruvian Andes. Quaternary Research 71, 7182.CrossRefGoogle Scholar
Hogg, A.G., Hua, Q., Blackwell, P.G., Niu, M., Buck, C.E., Guilderson, T.P., Heaton, T.J., et al. 2013. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55, 115.Google Scholar
Holliday, V.T., Hovorka, S.D., Gustavson, T.C., 1996. Lithostratigraphy and geochronology of fills in small playa basins on the Southern High Plains, United States. Geological Society of America Bulletin 108, 953965.2.3.CO;2>CrossRefGoogle Scholar
Horton, B.K., DeCelles, P.G., 1997. The modern foreland basin system adjacent to the Central Andes. Geology 25, 895898.Google Scholar
Hua, Q., Barbetti, M., Rakowski, A.Z., 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55, 20592072.CrossRefGoogle Scholar
Junk, W.J., da Cunha, C.N., Wantzen, K.M., Petermann, P., Strüssmann, C., Marques, M.I., Adis, J., 2006. Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquatic Sciences 68, 278309.Google Scholar
Kanner, L.C., Burns, S.J., Cheng, H., Edwards, R.L., Vuille, M., 2013. High-resolution variability of the South American summer monsoon over the last seven millennia: insights from a speleothem record from the central Peruvian Andes. Quaternary Science Reviews 75, 110.Google Scholar
Klammer, G., 1982. Die Palaeowuste des Pantanal von Mato Grosso und die pleistozane Klimageschichte des brasilianischen Randtropen. Zeitschrift für Geomorphologie 26, 393416.Google Scholar
Kuerten, S., Parolin, M., Assine, M.L., McGlue, M.M., 2013. Sponge spicules indicate Holocene environmental changes on the Nabileque River floodplain, southern Pantanal, Brazil. Journal of Paleolimnology 49, 171183.CrossRefGoogle Scholar
Luna, M.C.D.M., Parteli, E.J., Herrmann, H.J., 2012. Model for a dune field with an exposed water table. Geomorphology 159, 169177.Google Scholar
Makaske, B., Maathuis, B.H., Padovani, C.R., Stolker, C., Mosselman, E., Jongman, R.H., 2012. Upstream and downstream controls of recent avulsions on the Taquari megafan, Pantanal, south-western Brazil. Earth Surface Processes and Landforms 37, 13131326.Google Scholar
Malone, C.F.S., Santos, K.R.S., Sant’Anna, C.L., 2013. Algas e cianobactérias de ambientes extremos do pantanal brasileiro. Oecologia Australis 16, 745755.CrossRefGoogle Scholar
Mariot, M., Dudal, Y., Furian, S., Sakamoto, A., Vallès, V., Fort, M., Barbiero, L., 2007. Dissolved organic matter fluorescence as a water-flow tracer in the tropical wetland of Pantanal of Nhecolândia, Brazil. Science of the Total Environment 388, 184193.Google Scholar
McGlue, M.M., Silva, A., Zani, H., Corradini, F.A., Parolin, M., Abel, E.J., Cohen, A.S., et al. 2012. Lacustrine records of Holocene flood pulse dynamics in the Upper Paraguay River watershed (Pantanal wetlands, Brazil). Quaternary Research 78, 285294.CrossRefGoogle Scholar
Metcalfe, S.E., Whitney, B.S., Fitzpatrick, K.A., Mayle, F.E., Loader, N.J., Street‐Perrott, F.A., Mann, D.G., 2014. Hydrology and climatology at Laguna La Gaiba, lowland Bolivia: complex responses to climatic forcings over the last 25 000 years. Journal of Quaternary Science 29, 289300.Google Scholar
Meyers, P.A., Ishiwatari, R., 1993. Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry 20, 867900.Google Scholar
Mortlock, R.A., Froelich, P.N., 1989. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Research, Part A: Oceanographic Research Papers 36, 14151426.Google Scholar
Mourão, G., Ishii, I.H., Campos, Z., 1988. Alguns fatores limnológicos relacionados com a ictiofauna de baías e salinas do Pantanal da Nhecolândia, Mato Grosso do Sul, Brasil. Acta Limnologia Brasil 11, 181198.Google Scholar
Murray, A.S., Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.Google Scholar
Novello, V.F., Vuille, M., Cruz, F.W., Stríkis, N.M., de Paula, M.S., Edwards, R.L., Cheng, H., et al. 2016. Centennial-scale solar forcing of the South American Monsoon System recorded in stalagmites. Scientific Reports 6, 24762. http://dx.doi.org/10.1038/srep24762.Google Scholar
Parteli, E.J.R., Schwämmle, V., Herrmann, H.J., Monteiro, L.H.U., Maia, L.P., 2006. Profile measurement and simulation of a transverse dune field in the Lençóis Maranhenses. Geomorphology 81, 2942.Google Scholar
Por, F.D., 1995. The Pantanal of Mato Grosso (Brazil): World’s Largest Wetlands. Springer, Dordrecht, the Netherlands.Google Scholar
Porsani, J.L., Assine, M.L., Moutinho, L., 2005. Application of GPR in the study of a modern alluvial megafan: the case of the Taquari River in Pantanal wetland, west-central Brazil. Subsurface Sensing Technologies and Applications 6, 219233.CrossRefGoogle Scholar
Pott, A., Oliveira, A.K.M., Damasceno-Junior, G.A., Silva, J.S.V., 2011. Plant diversity of the Pantanal wetland. Brazilian Journal of Biology 71, 265273.CrossRefGoogle ScholarPubMed
Pott, A., Pott, V.J., 2004. Features and conservation of the Brazilian Pantanal wetland. Wetlands Ecology and Management 12, 547552.Google Scholar
Pupim, F.N., Assine, M.L., Sawakuchi, A.O., 2017. Late Quaternary Cuiabá megafan, Brazilian Pantanal: channel patterns and paleoenvironmental changes. Quaternary International 438, 108125.CrossRefGoogle Scholar
Quénol, H., Fort, M., Barbiero, L., Sakamoto, A., 2006. Microclimatologie d’une saline dans le Pantanal de la Nhecolandia. In: Mendonça, F., Bertrand, F. (Eds.), Le Brésil: géopolitique et environnements actuels. CNRS, Paris, pp. 5558.Google Scholar
Rezende-Filho, A.T., Furian, S., Victoria, R.L., Mascré, C., Valles, V., Barbiero, L., 2012. Hydrochemical variability at the Upper Paraguay Basin and Pantanal wetland. Hydrology and Earth Systems Science 16, 27232737.Google Scholar
Rigonato, J., Kent, A.D., Alvarenga, D.O., Andreote, F.D., Beirigo, R.M., Vidal-Torrado, P., Fiore, M.F., 2013. Drivers of cyanobacterial diversity and community composition in mangrove soils in south-east Brazil. Environmental Microbiology 15, 11031114.Google Scholar
Rojas, M., Arias, P.A., Flores-Aqueveque, V., Seth, A., Vuille, M., 2016. The South American monsoon variability over the last millennium in climate models. Climate of the Past 12, 16811691.Google Scholar
Sakamoto, A.Y., 1997. Dinâmica hídrica em uma lagoa salina e seu entorno no Pantanal da Nhecolândia: contribuição ao estudo das relações entre o meio físico e a ocupação, Fazenda São Miguel Firme, MS. PhD dissertation, Departamento de Geografia, Universidade de São Paulo, São Paulo, Brazil.Google Scholar
Santos, K.R.D.S., Rocha, A.C.R., Sant’Anna, C.L., 2013. Diatoms from shallow lakes in the Pantanal of Nhecolândia, Brazilian wetland. Oecologia Australis 16, 756769.Google Scholar
Silva, J., Abdon, M., 1998. Delimitação do pantanal brasileiro e suas sub-regiões. Pesquisa Agropecuária Brasileira 33, 17031711.Google Scholar
Sanz, M.E., Zarza, A.A., Calvo, J.P., 1995. Carbonate pond deposits related to semi‐arid alluvial systems: examples from the Tertiary Madrid Basin, Spain. Sedimentology 42, 437452.Google Scholar
Seidl, A.F., Moraes, A.S., 2000. Global valuation of ecosystem services: application to the Pantanal da Nhecolandia, Brazil. Ecological Economics 33, 16.Google Scholar
Silva, J.D., Abdon, M.D., 1998. Delimitation of the Brazilian Pantanal and its subregions. Pesquisa Agropecuaria Brasileira 33, 17031711.Google Scholar
Soares, A.P., Soares, P.C., Assine, M.L., 2003. Areiais e lagoas do pantanal, Brasil: herança paleoclimática? Brazilian Journal of Geology 33, 211224.Google Scholar
Talbot, M.R., Kelts, K., 1990. Paleolimnological signatures from carbon and oxygen isotopic ratios in carbonates, from organic carbon-rich lacustrine sediments. In: Lacustrine Basin Exploration: Case Studies and Modern Analogs. American Association of Petroleum Geologists (AAPG) Memoir 50. AAPG, Tulsa, OK, pp. 99–112.Google Scholar
Thomas, D.S.G., Nash, D.J., Shaw, P.A., Van der Post, C., 1993. Present day lunette sediment cycling at Witpan in the arid southwestern Kalahari Desert. Catena 20, 515527.Google Scholar
Thompson, L.G., Davis, M.E., Mosley-Thompson, E., Sowers, T.A., Henderson, K.A., Zagorodnov, V.S., Lin, P.N., et al. 1998. A 25,000-year tropical climate history from Bolivian ice cores. Science 282, 18581864.Google Scholar
Tricart, J., 1982. El Pantanal: un ejemplo del impacto geomorfologico sobre el ambiente. Investigaciones Geográficas 29, 181.Google Scholar
Tripaldi, A., Zárate, M.A., 2016. A review of Late Quaternary inland dune systems of South America east of the Andes. Quaternary International 410, 96110.Google Scholar
Victoria, R.L., Fernandes, F., Martinelli, L.A., de Cássia Piccolo, M., de Camargo, P.B., Trumbore, S., 1995. Past vegetation changes in the Brazilian Pantanal arboreal–grassy savanna ecotone by using carbon isotopes in the soil organic matter. Global Change Biology 1, 165171.CrossRefGoogle Scholar
Volkmer-Ribeiro, C., De Rosa-Barbosa, R., Mansur, M.C.D., 1981. Fauna espongológica e malacológica bêntica da Lagoa Negra, parque Estadual de Itapuã, Rio Grande do Sul. Iheringia Série Zoologia 59, 1324.Google Scholar
Volkmer-Ribeiro, C., Pauls, S.M., 2000. Esponjas de Agua Dulce (Porifera, Demospongiae) de Venezuela. Acta Biologica Venezuelica 20, 128.Google Scholar
Ward, J.D., 1988. Eolian, fluvial and pan (playa) facies of the Tertiary Tsondab Sandstone Formation in the central Namib Desert, Namibia. Sedimentary Geology 55, 143162.Google Scholar
Whitney, B.S., Mayle, F.E., Punyasena, S.W., Fitzpatrick, K.A., Burn, M.J., Guillen, R., Chavez, E., Mann, D., Pennington, R.T., Metcalfe, S.E., 2011. A 45 kyr palaeoclimate record from the lowland interior of tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology 307, 177192.Google Scholar
Wilhelmy, H., 1958. Umlaufseen und dammuferseen tropischer tieflandflusse. Zeitschrift fur Geomorphologie 2, 2754.Google Scholar
Zani, H., Assine, M.L., McGlue, M.M., 2012. Remote sensing analysis of depositional landforms in alluvial settings: method development and application to the Taquari megafan, Pantanal (Brazil). Geomorphology 161, 8292.Google Scholar
Supplementary material: File

McGlue et al supplementary material

Table S1

Download McGlue et al supplementary material(File)
File 12.4 KB
Supplementary material: File

McGlue et al supplementary material

Table S2

Download McGlue et al supplementary material(File)
File 21.5 KB
Supplementary material: File

McGlue et al supplementary material

McGlue et al supplementary material 1

Download McGlue et al supplementary material(File)
File 13.2 KB
Supplementary material: PDF

McGlue et al supplementary material

Figure S1

Download McGlue et al supplementary material(PDF)
PDF 401.5 KB