Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-11T13:02:53.095Z Has data issue: false hasContentIssue false

Holocene Relative Sea-Level History of Novaya Zemlya, Russia, and Implications for Late Weichselian Ice-Sheet Loading

Published online by Cambridge University Press:  20 January 2017

JaapJan Zeeberg
Affiliation:
Department of Earth and Environmental Sciences (M/C 186), University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois, 60607-7059,jzeebe1@uic.edu
David J. Lubinski
Affiliation:
Institute of Arctic and Alpine Research (INSTAAR), 1560 30th Street, Boulder, Colorado, 80303
Steven L. Forman
Affiliation:
Department of Earth and Environmental Sciences (M/C 186), University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois, 60607-7059

Abstract

We present six new radiocarbon-dated emergence curves that provide a detailed record of postglacial emergence of northern Novaya Zemlya and ages which constrain the emergence of Vaygach Island in the southern archipelago. Radiocarbon ages on Hiatella sp. from a lateral moraine in Russkaya Gavan' and abundances of foraminifea in a marine core from Nordenskiold Bay, 300 km south of our study area, indicate that coastal deglaciation occurred prior to ∼10,000 cal yr B.P. However, postglacial emergence commenced ∼7000 cal yr B.P., with stabilization of global sea level. The total emergence is 13–11 m above sea level (asl) with apparent uplift rates of 1–2 mm/yr for the past 2000 yr, indicating modest glacier loads (<1 km), early (>11,000 cal yr B.P.) deglaciation, or both. The isobase pattern, showing no east–west tilt across Novaya Zemlya, and offshore moraines suggest a separate ice-dispersal center over Novaya Zemlya for the later stages of the Late Weichselian glacial cycle and possibly earlier.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, J.T Postglacial rebound in Arctic Canada: Similarity and prediction of uplift curves. Canadian Journal of Earth Sciences 5, (1968). 39 47.CrossRefGoogle Scholar
Astakhov, V The last ice sheet of the Kara Sea: Terrestrial constraints on its age. Quaternary International 45/46, (1998). 19 28.CrossRefGoogle Scholar
Badyukov, D.D Geology of Cape Spory Navolok and the archaeological site. Gawronski, J.H, and Boyarsky, P.V Northbound with Barents. (1997). Jan Mets, Amsterdam. 58 62.Google Scholar
Bakkelid, S The determination of rates of land uplift in Norway. Tectonophysics 130, (1986). 307 326.CrossRefGoogle Scholar
Bard, E., Hamelin, B., Arnold, M., Montaggioni, L., Cabioch, G., Faure, E., and Rougerie, F. (1996). Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature 382, 241244.CrossRefGoogle Scholar
Bondevik, S, Mangerud, J, Ronnert, L, and Salvigsen, O Postglacial sea-level history of Edgeøya and Barentsøya, eastern Svalbard. Polar Research 14, (1995). 153 180.Google Scholar
Cathles, L.M The Viscosity of the Earth's Mantle. (1975). Princeton Univ. Press, Princeton.Google Scholar
Dyke, A.S, Morris, T.F, and Green, D.E.C Postglacial tectonic and sea-level history of the central Canadian Arctic. Geological Survey of Canada Bulletin 397, (1991). 1 56.Google Scholar
Elverhøi, A, Anders, E.S, Dokken, T, Hebblen, D, Spielhagen, R, Svendsen, J, Sørflaten, M, Rørnes, A, Hald, M, and Forsberg, C.S The growth and decay of the Late Weichselian ice sheet in western Svalbard and adjacent areas based on provenance studies of marine sediments. Quaternary Research 44, (1995). 303 316.CrossRefGoogle Scholar
Emery, K.O, and Aubrey, D.G Sea Levels, Land Levels, and Tide Gauges. (1991). Springer-Verlag, New York.CrossRefGoogle Scholar
Fairbanks, R.G A 17,000 year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, (1989). 637 642.CrossRefGoogle Scholar
Forman, S.L Post-glacial relative sea-level history of northwestern Spitsbergen, Svalbard. Geological Society of America Bulletin 102, (1990). 1580 1590.2.3.CO;2>CrossRefGoogle Scholar
Forman, S.L, and Polyak, L Radiocarbon content of pre-bomb marine mollusks and variations in the 14C reservoir age or coastal areas of the Barents and Kara seas, Russia. Geophysical Research Letters 24, (1997). 885 888.CrossRefGoogle Scholar
Forman, S.L, and Ingolfsson, O Late Weichselian glacial history and postglacial emergence of Phippsøya, Sjuøyane, northern Svalbard: A comparison of modeled and empirical estimates of a glacial-rebound hinge line. Boreas 29, (2000). 16 25.Google Scholar
Forman, S.L, Lubinski, D.J, Miller, G.H, Snyder, J, Matishov, G, Korsun, S, and Myslivets, V Postglacial emergence and distribution of late Weichselian ice-sheet loads in the northern Barents and Kara Seas, Russia. Geology 23, (1995). 113 116.2.3.CO;2>CrossRefGoogle Scholar
Forman, S.L, Weihe, R, Lubinski, D, Tarasov, G, Korsun, S, and Matishov, G Holocene relative sea-level history of Franz Josef Land, Russia. Geological Society of America Bulletin 109, (1997). 1116 1133.2.3.CO;2>CrossRefGoogle Scholar
Forman, S.L, Lubinski, D.J, Zeeberg, J.J, and Polyak, L Postglacial emergence and Late Quaternary glaciation on northern Novaya Zemlya, Arctic Russia. Boreas 28, (1999). 133 145.CrossRefGoogle Scholar
Forman, S.L, Ingolfsson, O, Gataullin, V, Manley, W.F, and Lokrantz, H Late Quaternary stratigraphy of western Yamal Peninsula, Russia; new constraints on the configuration of the Eurasian ice sheet. Geology 27, (1999). 807 810.2.3.CO;2>CrossRefGoogle Scholar
Gataullin, V. L., and Polyak, L. (1997). Morainic ridge complex, eastern Barents Sea.. in Acoustic Images of Glaciated Continental Margins Davies, T. A., Ed., pp. 8283., Chapman & Hall, London.CrossRefGoogle Scholar
Gataullin, V.L, Polyak, L, Epstein, O, and Romanyuk, B Glacigenic deposits of the Central Deep: A key to the late Quaternary evolution of the eastern Barents Sea. Boreas 22, (1993). 47 58.CrossRefGoogle Scholar
Gawronski, J.H, and Zeeberg, J.J The wrecking of Barents' ship. Boyarsky, P.V, and Gawronski, J.H.G Northbound with Barents. (1997). Jan Mets, Amsterdam. 89 92.Google Scholar
Grønlie, O.T Contributions to the Quaternary Geology of Novaya Zemlya. Report of the Scientific Results of the Norwegian expedition to Novaya Zemlya 1921, Vol. 21. (1924). A. W. Broggers Boktrykkeri, Oslo.Google Scholar
Grosswald, M.G Late Weichselian ice sheets of northern Eurasia. Quaternary Research 13, (1980). 1 32.CrossRefGoogle Scholar
Hald, M, Kolstad, V, Polyak, L, Forman, S.L, Herlihy, F.A, Ivanov, G, and Nescheretov, A Late-glacial and Holocene paleoceanography and sedimentary environments in the St. Anna Trough, Eurasian Arctic Ocean margin. Palaeogeography, Palaeoclimatology, Palaeoecology 146, (1999). 229 249.CrossRefGoogle Scholar
Johansen, S The origin and age of driftwood on Jan Mayen. Polar Research 17, (1998). 125 146.CrossRefGoogle Scholar
Kidson, C Sea level changes in the Holocene. Quaternary Science Reviews 1, (1982). 121 151.CrossRefGoogle Scholar
Lambeck, K Glacial rebound and sea-level change: An example of a relationship between mantle and surface processes. Tectonophysics 223, (1993). 15 37.CrossRefGoogle Scholar
Lambeck, K Constraints on the Late Weichselian ice sheet over the Barents Sea from observations of raised shorelines. Quaternary Science Reviews 14, (1995). 1 16.CrossRefGoogle Scholar
Lambeck, K Limits on the areal extent of the Barents Sea ice sheet in Late Weichselian time. Global and Planetary Change 12, (1996). 41 51.CrossRefGoogle Scholar
Landvik, J.Y, Bondevik, S, Elverhøi, A, Fjeldskaar, W, Mangerud, J, Siegert, M.J, Salvigsen, O, Svendsen, J, and Vorren, T.O The last glacial maximum of Svalbard and the Barents Sea area: Ice sheet extent and configuration. Quaternary Science Reviews 17, (1998). 43 75.CrossRefGoogle Scholar
Lavrova, M Geomorphological outline of the Rusanov Valley in Novaya Zemlya. Proceedings of the Geological Institute of the USSR. (1932). 61 95.Google Scholar
Lubinski, D.J, Korsun, S, Polyak, L, Forman, S.L, Lehman, S, Herlihi, F.A, and Miller, G.H The last deglaciation of the Franz Victoria Trough, northern Barents Sea. Boreas 25, (1996). 89 100.CrossRefGoogle Scholar
Mangerud, J, Bolstad, M, Elgersma, A, Helliksen, D, Landvik, J, Lønne, I, Lycke, A, Salvigsen, O, Sandahl, T, and Svendsen, J.I The last glacial maximum on Spitsbergen, Svalbard. Quaternary Research 38, (1992). 1 31.CrossRefGoogle Scholar
Mangerud, J, Svendsen, J.I, and Astakhov, V.I Age and extent of the Barents and Kara ice sheets in Northern Russia. Boreas 28, (1999). 46 80.CrossRefGoogle Scholar
Nordenskjöld, O.N, and Mecking, L The geography of polar regions. American Geographical Society, Special Publication 8, (1928). 154 163.Google Scholar
Olsson, I.U Content of 14C in marine mammals from northern Europe. Radiocarbon 22, (1980). 662 675.CrossRefGoogle Scholar
Peltier, R.W Paleotopography of glacial-age ice sheets. Science 267, (1995). 536 538.Google Scholar
Peltier, R.W Mantle viscosity and ice-age ice sheet topography. Science 273, (1996). 1359 1364.CrossRefGoogle Scholar
Polyak, L, Lehman, S.J, Gataullin, V, and Jull, A.J.T Two-step deglaciation of the southeastern Barents Sea. Geology 23, (1995). 567 571.2.3.CO;2>CrossRefGoogle Scholar
Polyak, L, Forman, S.L, Herlihy, F.A, Ivanoc, G, and Krinitsky, P Late Weichselian deglacial history of the Svyataya (Saint) Anna Trough, northern Kara Sea, arctic Russia. Marine Geology 143, (1997). 169 188.CrossRefGoogle Scholar
Polyak, L, Gataullin, V, Okuneva, O, and Stelle, V New constraints on the limits of the Barents-Kara Ice Sheet during the last glacial maximum based on borehole stratigraphy from the Pechora Sea. Geology 28, (2000). 611 614.2.0.CO;2>CrossRefGoogle Scholar
Salvigsen, O, and Slettemark, O Past glaciation and sea levels on Bereneiland, Spitsbergen. Polar Research 14, (1995). 245 251.Google Scholar
Siegert, M.J, Dowdeswell, J.A, and Melles, M Late Weichselian glaciation of the Russian High Arctic. Quaternary Research 52, (1999). 273 285.CrossRefGoogle Scholar
Solheim, A, Russwurm, L, Elverhoi, A, and Nyland-Berg, M Glacial geomorphic features in the northern Barents Sea: Direct evidence for grounded ice and implications for the pattern of deglaciation and late glacial sedimentation. Dowdeswell, J.A, and Scourse, J.D Glacimarine Environments: Processes and Sediments. (1990). Geological Society of London, London. 253 268.Google Scholar
Stuiver, M, and Braziunas, T.F Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35, (1993). 137 189.CrossRefGoogle Scholar
Stuiver, M, Reimer, P.J, Bard, E, Beck, J.W, Burr, G.S, Hughen, K.A, Kromer, B, McCormac, F.G, v. d. Plicht, J, and Spurk, M Intcal98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40, (1998). 1041 1083.CrossRefGoogle Scholar
Svendsen, J.I, and Mangerud, J Late Weichselian and Holocene sea-level history for a cross-section of western Norway. Journal of Quaternary Science 2, (1987). 113 132.CrossRefGoogle Scholar
Svendsen, J.I, Astakhov, V.I, Bolshiyanov, D.Y, Demidov, I, Dowdeswell, J.A, Gataullin, V, Hjort, C, Hubberten, H.W, Larsen, E, Mangerud, J, Melles, M, Möller, P, Saarnisto, M, and Siegert, M.J Maximum extent of the Eurasian ice sheets in the Barents and Kara Sea region during the Weichselian. Boreas 28, (1999). 234 242.CrossRefGoogle Scholar
Woodman, R The Arctic Convoys, 1941–1945. (1994). John Murray, London.Google Scholar
Zeeberg, J. J. (1997). New data concerning the glacial history of the Barents Sea.. in Northbound with Barents Gawronski, J. H. and Boyarsky, P. V., Eds., pp. 6271. Jan Mets, Amsterdam.Google Scholar
Zeeberg, J.J, and Forman, S.L Changes in glacier extent on north Novaya Zemlya in the twentieth century. The Holocene 11, (2001). 161 175.CrossRefGoogle Scholar
Ziaja, W, and Salvigsen, O Holocene shoreline displacement in southernmost Spitsbergen. Polar Research 14, (1995). 339 340.CrossRefGoogle Scholar