Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-02T13:32:06.165Z Has data issue: false hasContentIssue false

Holocene hydrographical changes of the eastern Laptev Sea (Siberian Arctic) recorded in δ18O profiles of bivalve shells

Published online by Cambridge University Press:  20 January 2017

Thomas Mueller-Lupp*
Affiliation:
GEOMAR Research Center for Marine Geosciences, Wischhofstr.1-3, 24148 Kiel, Germany
Henning A. Bauch
Affiliation:
Mainz Academy of Sciences, Humanities and Literature, c/o GEOMAR, Wischhofstr. 1-3, D-24148 Kiel, Germany
Helmut Erlenkeuser
Affiliation:
Leibniz Laboratory for Radiometric Dating and Stable Isotope Research, Kiel University, 24098 Kiel, Germany
*
*Corresponding author. Fax: +49-431-6002941.E-mail address:tmueller-lupp@geomar.de (T. Mueller-Lupp).

Abstract

Oxygen isotope profiles along the growth axis of fossil bivalve shells of Macoma calcarea were established to reconstruct hydrographical changes in the eastern Laptev Sea since 8400 cal yr B.P. The variability of the oxygen isotopes (δ18O) in the individual records is mainly attributed to variations in the salinity of bottom waters in the Laptev Sea with a modern ratio of 0.50‰/salinity. The high-resolution δ18O profiles exhibit distinct and annual cycles from which the seasonal and annual salinity variations at the investigated site can be reconstructed. Based on the modern analogue approach oxygen isotope profiles of radiocarbon-dated bivalve shells from a sediment core located northeast of the Lena Delta provide seasonal and subdecadal insights into past hydrological conditions and their relation to the Holocene transgressional history of the Laptev Sea shelf. Under the assumption that the modern relationship between δ18Ow and salinity has been constant throughout the time, the δ18O of an 8400-cal-yr-old bivalves would suggest that bottom-water salinity was reduced and the temperature was slightly warmer, both suggesting a stronger mixture of riverine water to the bottom water. Reconstruction of the inundation history of the Laptev Sea shelf indicates local sea level ∼27 m below present at this time and a closer proximity of the site to the coastline and the Lena River mouth. Due to continuing sea level rise and a southward retreat of the river mouth, bottom-water salinity increased at 7200 cal yr B.P. along with an increase in seasonal variability. Conditions comparable to the modern hydrography were achieved by 3800 cal yr B.P.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagaard, K., Carmack, E.C., (1989). The role of sea ice and other fresh water in the arctic circulation. Journal of Geophysical Research C. 94, 10 1448514498.CrossRefGoogle Scholar
Aagaard, K., Carmack, E.C., (1994). The Arctic Ocean and climate: A perspective. The Polar Oceans and Their Role in Shaping the Global Environment. Geophysical Monograph. 85, 520.Google Scholar
Andreasson, F.P., Schmitz, B., (1998). Tropical atlantic seasonal dynamics in the early middle Eocene from stable oxygen and carbon isotope profiles of mollusk shells. Paleoceanography. 13, 2 183192.Google Scholar
Andreev, A.A., Siegert, C., Klimanov, V.A., Derevyagin, A.Yu., Shilova, G.N., Melles, M., (2002). Late pleistocene and holocene vegetation and climate on the Taymyr lowland, Northern Siberia. Quaternary Research. 57, 138150.CrossRefGoogle Scholar
Bauch, H.A., Polyakova, Y., (2003). Diatom-inferred salinity records from the Arctic margin: implications for fluvial runoff patterns during the Holocene. Paleoceanography. 18, 2 1027(doi: 10.1029/2002PA000847,2003).Google Scholar
Bauch, D., Schlosser, P., Fairbanks, R.G., (1995). Freshwater balance and the source of deep and bottom waters in the Arctic Ocean inferred from distribution of H2 18O. Progress in Oceanography. 35, 5380.CrossRefGoogle Scholar
Bauch, H.A., Kassens, H., Erlenkeuser, H., Grootes, P.M., Thiede, J., (1999). Depositional environment of the Laptev Sea (Arctic Siberia) during the Holocene. Boreas. 28, 194204.CrossRefGoogle Scholar
Bauch, H.A., Kassens, H., Naidina, O.D., Kunz-Pirrung, M., Thiede, J., (2001a). Composition and flux of Holocene sediments on the eastern Laptev Sea shelf, Arctic Siberia. Quaternary Research. 55, 341351.Google Scholar
Bauch, H.A., Müller-Lupp, T., Spielhagen, R.F., Taldenkova, E., Kassens, H., Grootes, P.M., Thiede, J., Heinemeier, J., Petryashov, V., (2001b). Chronology of the Holocene transgression at the northern Siberian margin. Global and Planetary Change. 31, 1–4 125140.Google Scholar
Bemis, B.E., Geary, D.H., (1996). The usefulness of bivalve stable isotope profiles as environmental indicators: Data from the eastern Pacific Ocean and the Southern Caribbean Sea. Palaios. 11, 328339.Google Scholar
Broecker, W.S., (1997). Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance?. Science. 278, 15821588.Google Scholar
Dmitrenko, I.A., Karpiy, V.I., Lebedev, N.V., (1995). Oceanographical studies. Kassens, H., Laptev Sea System: Expeditions in 1994. Reports on Polar Research. 182, 2233.Google Scholar
Dmitrenko, I.A., Golovin, P., Gribanov, V., Kassens, H., (1999). Oceanographic causes for transarctic ice transport of river discharge. Kassens, H., Bauch, H.A., Dmitrenko, I.A., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J., Timokhov, L.A., Land-Ocean Systems in the Siberian Arctic: Dynamics and History. Springer-Verlag, Berlin/Heidelberg/New York., 7392.Google Scholar
Epstein, S.R., Buchsbaum, R., Lowenstam, H.A., Urey, H.C., (1953). Revised carbonate water isotopic temperature scale. Geological Society of America Bulletin. 64, 13151326.Google Scholar
Erlenkeuser, H., Wefer, G., (1981). Seasonal growth of bivalves from Bermuda recorded in their O-18 profiles. Proceeding of the 4th International Coral Reef Symposium (Manila). vol. 2, 643648.Google Scholar
Environmental Working Group [EWG](1998). Joint U.S.–Russian Arctic Ocean atlas for winter and summer period (1950–1990). NSIDC, University of Colorado.Google Scholar
Global Runoff Data Center(1998). Bundesanstalt für Gewässerkunde, D - 56002 Koblenz, Germany.Google Scholar
Grossman, E.L., Ku, T.-L., (1986). Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effects. Chemical Geology (Isotope Geoscience Section). 59, 5974.Google Scholar
Gukov, A.Yu., (1999). Ecosystem of the Siberian Polynya. In RussianNauchny Mir, Moscow.Google Scholar
Holmes, M.L., Creager, J.S., (1974). Holocene history of the Laptev Sea continental shelf. Herman, Y., Marine geology and Oceanography of the Arctic Seas. Springer-Verlag, New York., 211230.Google Scholar
Horibe, Y., Oba, T., (1972). Temperature scales of aragonite–water and calcite–water systems. Fossils. 23/24, 6974.Google Scholar
Israelson, C., Buchardt, B., Funder, S., Hubberten, H.-W., (1994). Oxygen and carbon isotope composition of Quaternary bivalve shells as a water mass indicator: Last interglacial and Holocene, East Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology. 111, 119134.Google Scholar
International Bathymetric Chart of the Arctic Ocean 1.0. 2001. http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/arctic.html.Google Scholar
Jones, E.P., Anderson, L.G., Swift, J.H., (1998). Distribution of Atlantic and Pacific waters in the upper Arctic Ocean: Implication for circulation. Geophysical Research Letter. 25, 6 765768.CrossRefGoogle Scholar
Kassens, H., Dmitrenko, I., (1995). Laptev Sea sytem: Expeditions in 1994; The Transdrift II Expedition to the Laptev Sea. Reports on Polar Research. 182, .Google Scholar
Kassens, H., Karpiy, V.Y., (1994). Russian–German Cooperation: The Transdrift I Expedition to the Laptev Sea. Reports on Polar Research. 151, .Google Scholar
Kassens, H., Dmitrenko, I., Timokhov, L., Thiede, J., (1997). Laptev Sea sytem: Expeditions in 1995; The Transdrift III Expedition to the Laptev Sea. Reports on Polar Research. 248, .Google Scholar
Khim, B.-K., Krantz, D.E., Brigham-Grette, J., (2001). Stable isotope profiles of Last Interglacial (Pelukian Transgression) mollusks and paleoclimate implications in the Bering Strait region. Quaternary Science Reviews. 20, 461483.CrossRefGoogle Scholar
Kleiber, H.P., Niessen, F., (1999). Late Pleistocene paleoriver channels on the Laptev Sea shelf—Implications from sub-bottom profiling. Kassens, H., Bauch, H.A., Dmitrenko, I.A., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J., Timokhov, L.A., Land–Ocean Systems in the Siberian Arctic: Dynamics and History. Springer–Verlag, Berlin/Heidelberg/New York., 657665.Google Scholar
Krantz, D.E., Williams, D.F., Jones, D.S., (1987). Ecological and paleoenvironmental information using stable isotope profiles from living and fossil molluscs. Palaeogeography, Palaeoclimatology, Palaeoecology. 58, 249266.Google Scholar
Krantz, D.E., Kronick, A.T., Williams, D.F., (1988). A model for interpreting continental-shelf hydrographic processes from stable isotope and cadmium: Calcium profiles of scallop shells. Palaeogeography, Palaeoclimatology, Palaeoecology. 64, 123140.CrossRefGoogle Scholar
Laing, T.E., Rühland, K.M., Smol, J.P., (1999). Past environmental and climatic changes related from treeline shifts inferred from fossil diatoms from a lake near the Lena River Delta. The Holocene. 9, 547557.Google Scholar
Létolle, R., Martin, J.M., Thomas, A.J., Gordeev, V.V., Gusarova, S., Sidorov, I.S., (1993). 18O abundance and dissolved silicate in the Lena delta and Laptev Sea (Russia). Marine Chemistry. 43, 4764.CrossRefGoogle Scholar
Mac Donald, G.M., Velichko, A.A., Kremenetski, C.V., Borisova, O.K., Goleva, A.A., Andreev, A.A., Cwynar, L.C., Riding, R.T., Forman, S.L., Edwards, T.W.D., Aravena, R., Hammarlund, D., Szeicz, J.M., Gatullin, V., (2000). Holocene treeline history and climate across northern Eurasia. Quaternary Research. 53, 3 302311.Google Scholar
Mueller-Lupp, T., (2002). Short- and Long-Term Environmental changes in the Laptev Sea / Siberian Arctic during the Holocene. Reports on Polar and Marine Research. 424, .Google Scholar
Mueller-Lupp, T., Bauch, H.A., Erlenkeuser, H., Hefter, J., Kassens, H., Thiede, J., (2000). Changes in the deposition of terrestrial organic matter on the Laptev Sea shelf during the Holocene: Evidence from stable carbon isotopes. International Journal of Earth Sciences. 89, 3 563568.Google Scholar
Mueller-Lupp, T., Bauch, H.A., Erlenkeuser, H., (2003). Seasonal and interannual variability of Siberian river discharge in the Laptev Sea inferred from stable isotopes in modern bivalves. Boreas. 32, 292303.Google Scholar
Naidina, O.D., Bauch, H.A., (2001). A Holocene pollen record from the Laptev Sea shelf, Northern Yakutia. Global Planetary Change. 31, 1–4 141153.CrossRefGoogle Scholar
Pisaric, M.F.J., MacDonald, G.M., Velichko, A.A., Cwynar, L.C., (2001). The late-glacial and post-glacial vegetation history of the northern limits of Beringia based on pollen, stomate and tree stump evidence. Quaternary Science Reviews. 20, 1–3 235245.CrossRefGoogle Scholar
Rahmstorf, S., (1995). Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature. 378, 145149.Google Scholar
Richling, I., (2000). Arktische Bivalvia — Eine taxonomische Bearbeitung auf Grundlage des Materials der Expedition TRANSDRIFT I und ARK IX/4 (1993). Schriften zur Malakozoologie, 15, Haus der Natur — Cismar.Google Scholar
Schwamborn, G., Rachold, V., Grigoriev, M.N., (2002). Late Quaternary sedimentation history of the Lena Delta. Quaternary International. 89, 119134.Google Scholar
Stein, R., Stepanets, O., (2001). Scientific Cruise of the Joint Russian–German Kara Sea Expedition of RV “Akademik Boris Petrov.”. Reports of Polar and Marine Research. 393, .Google Scholar
Stuiver, M., Reimer, P.J., (2000). Radiocarbon calibration program, CALIB rev.4.3. Quaternary Isotope Lab, University of Washington., Based on Stuiver, M. Reimer, P.J. 1993. Radiocarbon 35, 215–230.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., v.d. Plicht, J., Spurk, M., (1998). INTCAL98 Radiocarbon Age Calibration, 24,000–0 cal BP. Radiocarbon. 40, 10411083.Google Scholar
UNESCO, (1985). The International System of Units (SI) in Oceanography-Technical Paper 45. UNESCO.Google Scholar
Wefer, G., Berger, W.H., (1991). Isotope paleontology: Growth and composition of extant calcareous species. Marine Geology. 100, 207248.Google Scholar
Wegner, C., Hoelemann, J.A., Dmitrenko, I., Kirillov, S., Tuschling, K., Abramova, E., Kassens, H., (2002). Suspended particulate matter on the Laptev Sea shelf (Siberian Arctic) during ice-free conditions. Estuarine, Coastal and Shelf Sciences. In press.Google Scholar
Werner, A.L., Bitz, C.M., Fanning, A.F., Holland, M.M., (1999). Thermohaline circulation: High-latitude phenomena and the differences between the Pacific and the Atlantic. Annual Reviews of Earth and Planetary Science. 27, 231285.Google Scholar