Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-22T00:44:39.854Z Has data issue: false hasContentIssue false

Holocene climate changes in the mid-high-latitude-monsoon margin reflected by the pollen record from Hulun Lake, northeastern Inner Mongolia

Published online by Cambridge University Press:  20 January 2017

Ruilin Wen
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Jule Xiao*
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Zhigang Chang
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Dayou Zhai
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Qinghai Xu
Affiliation:
College of Resources and Environment, Hebei Normal University, Shijiazhuang 050016, China
Yuecong Li
Affiliation:
College of Resources and Environment, Hebei Normal University, Shijiazhuang 050016, China
Shigeru Itoh
Affiliation:
Paleo Labo Co., Ltd., Saitama 335-0016, Japan
Zaur Lomtatidze
Affiliation:
Paleo Labo Co., Ltd., Saitama 335-0016, Japan
*
*Corresponding author. Fax: +86 10 6201 0846.E-mail address:jlxiao@mail.iggcas.ac.cn (J.L. Xiao).

Abstract

Pollen-assemblage data from a sediment core from Hulun Lake in northeastern Inner Mongolia describe the changes in the vegetation and climate of the East Asian monsoon margin during the Holocene. Dry steppe dominated the lake basin from ca. 11,000 to 8000 cal yr BP, suggesting a warm and dry climate. Grasses and birch forests expanded 8000 to 6400 cal yr BP, implying a remarkable increase in the monsoon precipitation. From 6400 to 4400 cal yr BP, the climate became cooler and drier. Chenopodiaceae dominated the interval from 4400 to 3350 cal yr BP, marking extremely dry condition. Artemisia recovered 3350-2050 cal yr BP, denoting an amelioration of climatic conditions. Both temperature and precipitation decreased 2050 to 1000 cal yr BP as indicated by decreased Artemisia and the development of pine forests. During the last 1000 yr, human activities might have had a significant influence on the environment of the lake region. We suggest that the East Asian summer monsoon did not become intensified until 8000 cal yr BP due to the existence of remnant ice sheets in the Northern Hemisphere. Changes in the monsoon precipitation on millennial to centennial scales would be related to ocean-atmosphere interactions in the tropical Pacific.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, Z.S., (2000). The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews 19, 171187.CrossRefGoogle Scholar
Alley, R.B., Ágústsdόttir, A.M., (2005). The 8k event: cause and consequences of a major Holocene abrupt climate change. Quaternary Science Reviews 24, 11231149.CrossRefGoogle Scholar
Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., Clark, P.U., (1997). Holocene climatic instability: a prominent widespread event 8200 yr ago. Geology 25, 483486.Google Scholar
Barber, D.C., Dyke, A., Hillaire-Marcel, C., Jennings, A.E., Andrews, J.T., Kerwin, M.W., Bilodeau, G., McNeely, R., Southon, J., Morehead, M.D., Gagnon, J.M., (1999). Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide Lakes. Nature 400, 344348.Google Scholar
Beget, J.E., Addison, J.A., (2007). Methane gas release from the Storegga submarine landslide linked to early-Holocene climate change: a speculative hypothesis. The Holocene 17, 291295.CrossRefGoogle Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., Bonani, G., (2001). Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 21302136.Google Scholar
Bronk Ramsey, C., (2001). Development of the radiocarbon calibration program. Radiocarbon 43, 355363.CrossRefGoogle Scholar
(1984). Chinese Academy of Sciences (Compilatory Commission of Physical Geography of China). Physical Geography of China: Climate. Science Press, Beijing., 130.(in Chinese).Google Scholar
(1988). COHMAP Members. Climatic changes of the last 18,000 years: observations and model simulations. Science 241, 10431052.CrossRefGoogle Scholar
Cohen, A.S., (2003). Paleolimnology: the History and Evolution of Lake Systems. Oxford University Press, New York., 500 pp.Google Scholar
(1980). Compilatory Commission of Vegetation of China. Vegetation of China. Science Press, Beijing., 932955.(in Chinese).Google Scholar
El-Moslimany, A.P., (1990). Ecological significance of common nonarboreal pollen: examples from drylands of the Middle East. Review of Palaeobotany and Palynology 64, 343350.CrossRefGoogle Scholar
Fægri, K., Kaland, P.E., Krzywinski, K., (1989). Textbook of Pollen Analysis 4th Edition. John Wiley & Sons, New York., 6989.Google Scholar
Feng, Z.D., Wang, W.G., Guo, L.L., Khosbayar, P., Narantsetseg, T., Jull, A.J.T., An, C.B., Li, X.Q, Zhang, H.C., Ma, Y.Z., (2005). Lacustrine and eolian records of Holocene climate changes in the Mongolian Plateau: preliminary results. Quaternary International 136, 2532.Google Scholar
Fowell, S.J., Hansen, B.C.S., Peck, J.A., Khosbayar, P., Ganbold, E., (2003). Mid to late Holocene climate evolution of the Lake Telmen Basin, north central Mongolia, based on palynological data. Quaternary Research 59, 353363.CrossRefGoogle Scholar
Grimm, E.C., (1987). CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13, 1335.CrossRefGoogle Scholar
Hilbig, W., (1995). The Vegetation of Mongolia. SPB Academic Publishing, Amsterdam., 236238.Google Scholar
Jian, Z.M., Wang, P.X., Saito, Y., Wang, J.L., Pflaumann, U., Oba, T., Cheng, X.R., (2000). Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean. Earth and Planetary Science Letters 184, 305319.Google Scholar
Karabanov, E.B., Prokopenko, A.A., Williams, D.F., Khursevich, G.K., (2000). A new record of Holocene climate change from the bottom sediments of Lake Baikal. Palaeogeography, Palaeoclimatology, Palaeoecology 156, 211224.CrossRefGoogle Scholar
Kutzbach, J.E., Street-Perrott, F.A., (1985). Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr BP. Nature 317, 130134.CrossRefGoogle Scholar
Li, S.H., Sun, J.M., (2006). Optical dating of Holocene dune sands from the Hulun Buir Desert, northeastern China. The Holocene 16, 457462.Google Scholar
Mayewski, P.A., Meeker, L.D., Twickler, M.S., Whitlow, S.I., Yang, Q.Z., Lyons, W.B., Prentice, M., (1997). Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series. Journal of Geophysical Research 102, 2634526366.CrossRefGoogle Scholar
Mayewski, P.A., Rohling, E.E., Stager, J.C., Karlén, W., Maasch, K.A., Meeker, L.D., Meyerson, E.A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.R., Steig, E.J., (2004). Holocene climate variability. Quaternary Research 62, 243255.CrossRefGoogle Scholar
Nakamura, T., Niu, E., Oda, H., Ikeda, A., Minami, M., Takahashi, H., Adachi, M., Pals, L., Gottdang, A., Suya, N., (2000). The HVEE Tandetron AMS system at Nagoya University. Nuclear Instruments and Methods in Physics Research B172, 5257.CrossRefGoogle Scholar
Peck, J.A., Khosbayar, P., Fowell, S.J., Pearce, R.B., Ariunbileg, S., Hansen, B.C.S., Soninkhishig, N., (2002). Mid to Late Holocene climate change in north central Mongolia as recorded in the sediments of Lake Telmen. Palaeogeography, Palaeoclimatology, Palaeoecology 183, 135153.CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Bronk Ramsey, C., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., Weyhenmeyer, C.E., (2004). Intcal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46, 10291058.Google Scholar
Stager, J.C., Mayewski, P.A., (1997). Abrupt early to mid-Holocene climatic transition registered at the equator and the poles. Science 276, 18341836.CrossRefGoogle Scholar
Steig, E.J., (1999). Mid-Hoocene climate change. Science 286, 14851487.Google Scholar
Stott, L., Cannariato, K., Thunell, R., Haug, G.H., Koutavas, A., Lund, S., (2004). Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature 431, 5659.Google Scholar
ter Braak, C.J.F., (1988). CANOCO–a FORTRAN Program for Canonical Community Ordination by (Partial) (Detrended) (Canonical) Correspondence Analysis, Principal Components Analysis and Redundancy Analysis (Version 2.1). Technical Rep. LWA-88-02, GLW, Wageningen, , 95 pp.Google Scholar
ter Braak, C.J.F., Prentice, I.C., (1988). A theory of gradient analysis. Advances in Ecological Research 18, 271317.Google Scholar
ter Braak, C.J.F., Smilauer, P., (2002). CANOCO 4.5. Biometrics. Wageningen University and Research Center, Wageningen., 500 pp.Google Scholar
Van Campo, E., Gasse, F., (1993). Pollen- and diatom-inferred climatic and hydrological changes in Sumxi Co basin (Western Tibet) since 13,000 yr B.P. Quaternary Research 39, 300313.Google Scholar
Van Campo, E., Cour, P., Hang, S.X., (1996). Holocene environmental changes in Bangong Co basin (Western Tibet). Part 2: The pollen record. Palaeogeography, Palaeoclimatology, Palaeoecology 120, 4963.Google Scholar
Wang, S.M., Ji, L., (1995). Paleolimnology of Hulun Lake. University of Science and Technology of China Press, Hefei, 125 pp (in Chinese).Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., He, Y.Q., Kong, X.G., An, Z.S., Wu, J.Y., Kelly, M.J., Dykoski, A.D., Li, X.D., (2005). The Holocene Asian monsoon: link to solar changes and North Atlantic climate. Science 308, 854857.Google Scholar
Xiao, J.L., Xu, Q.H., Nakamura, T., Yang, X.L., Liang, W.D., Inouchi, Y., (2004). Holocene vegetation variation in the Daihai Lake region of north-central China: a direct indication of the Asian monsoon climatic history. Quaternary Science Reviews 23, 16691679.Google Scholar
Xiao, J.L., Wu, J.T., Si, B., Liang, W.D., Nakamura, T., Liu, B.L., Inouchi, Y., (2006). Holocene climate changes in the monsoon/arid transition reflected by carbon concentration in Daihai Lake of Inner Mongolia. The Holocene 16, 551560.Google Scholar
Xiao, J.L., Si, B., Zhai, D.Y., Itoh, S., Lomtatidze, Z., (2008). Hydrology of Dali Lake in central-eastern Inner Mongolia and Holocene East Asian monsoon variability. Journal of Paleolimnology 40, 519528.CrossRefGoogle Scholar
Xiao, J.L., Chang, Z.G., Wen, R.L., Zhai, D.Y., Itoh, S., Lomtatidze, Z., (2009). Holocene weak monsoon intervals indicated by low lake levels at Hulun Lake in the monsoonal margin region of northeastern Inner Mongolia. China. The Holocene 19, 899908.CrossRefGoogle Scholar
Yang, X.D., Wang, S.M., (1996). The vegetational and climatic-environmental changes in Hulun Lake and Wulungu Lake during Holocene. Oceanologia et Limnologia Sinica 27, 6772.Google Scholar
Xu, Z.J., Jiang, F.Y., Zhao, H.W., Zhang, Z.B., Sun, L., (1989). Annals of Hulun Lake. Jilin Literature and History Publishing House, Changchun., 691 pp (in Chinese).Google Scholar
Zhang, J.C., Lin, Z.G., (1985). Climate of China. Shanghai Scientific and Technical Publishers, Shanghai., 603 pp (in Chinese).Google Scholar