Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T17:25:13.142Z Has data issue: false hasContentIssue false

Geochronological position of badlands and geomorphological patterns in the Guadix–Baza Basin (SE Spain)

Published online by Cambridge University Press:  20 January 2017

José Luis Díaz-Hernández*
Affiliation:
Centro de Investigaciones Agrarias, Consejería de Innovación, Ciencia y Empresa, Camino de Purchil s/n, Aptdo. 2027, 18080 Granada, Spain
Ramón Juliá
Affiliation:
Instituto Jaume Almera, CSIC, c/Solé Sabarís s/n, 080288 Barcelona, Spain
*
*Corresponding author. Fax: +34 958 258510. E-mail address:josel.diaz@juntadeandalucia.es (J.L. Díaz-Hernández).

Abstract

The Guadix–Baza basin is one of a number of intramontane depressions located within the Betic Cordillera (SE Spain), where the geological and geomorphological evolution is controlled by tectonic activity. The basin ceased to be closed after capture by the Atlantic network, when five main land systems developed. Late Pleistocene geological evolution basically consisted of erosional modelling, when badlands were deeply incised in highly erodible materials (marls and silts). Three travertine platforms and several Palaeolithic sites were used to determine that this main incision period fell within a 115,000–48,000 yr range. There are few signs of geomorphological evolution of this basin in the last 48,000 yr. Based on these geomorphological data and soil development, tectonic uplift of the basin probably played a secondary role in its evolution, and climatic conditions in southern Iberia in the 144,000–48,000 yr period were more humid and variable than later.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berakhi, O., Brancaccio, L., Calderoni, G., Coltorti, M., Dramis, F., Umer, M.M., (1998). The Mai Maikden sedimentary sequence: a reference point for the environmental evolution of the Highlands of Northern Ethiopia. Geomorphology 23, 127138.CrossRefGoogle Scholar
Bischoff, J.L., Fitzpatrick, J.A., (1991). U-series dating of impure carbonates: an isochron technique using total-sample dissolution. Geochimica et Cosmochimica Acta 55, 543554.CrossRefGoogle Scholar
Bischoff, J.L., Rosenbauer, R.J., Tavoso, A., Lumley, H., (1988a). A test of uranium-series dating of fossil tooth enamel: results from Tournel cave, France. Applied Geochemistry 3, 145151.Google Scholar
Bischoff, J.L., Julià, R., Mora, R., (1988b). Uranium-series dating of the Mousterian occupation at Abric Romaní, Spain. Nature 332, 6870.CrossRefGoogle Scholar
Boardman, J., Parsons, A.J., Holland, R., Holmes, P.J., Washington, R., (2003). Development of badlands and gullies in the Sneeuberg, Great Karoo, South Africa. Catena 50, 165184.Google Scholar
Bosinski, G., (1982). The transition Lower/Middle Palaeolithic in Nortwestern Germany. The transition form Lower to Middle Palaeolithic and the Origin of Modern Man. International Symposium, Haifa, October 1980. B.A.R. Int. Series 151, 165175.Google Scholar
Botella, M., Marqués, I., de Benito, A., Ruiz, A., Delgado, M.T., (1976). La excavación y sus resultados arqueológicos. Cuadernos de Prehistoria de la Universidad de Granada 1, 2544.Google Scholar
Bryan, R.B., Yair, A., (1982). Badlands Geomorphology and Piping. Geo Books, Norwich, England.408 pp.Google Scholar
Bull, W.B., (1991). Geomorphic Response to Climate Change. Oxford Univ. Press, New York.326 pp.Google Scholar
Burjachs, F., Julià, R., (1994). Abrupt climatic changes during the last glaciation based on Pollen analysis of the Abric Romaní, Catalonia, Spain. Quaternary Research 42, 308315.CrossRefGoogle Scholar
Cacho, I., Grimalt, J.O., Pelejero, C., Canals, M., Sierro, F.J., Flores, J.A., Shackleton, N., (1999). Dansgaard–Oeschger and Henrich event imprints in Alboran Sea paleotemperatures. Paleoceanography 14, 698705.CrossRefGoogle Scholar
Cacho, I., Grimalt, J.O., Sierro, F.J., Shackleton, N., Canals, M., (2000). Evidence for enhanced Mediterranean thermohaline circulation during rapid climatic coolings. Earth and Planetary Science Letters 183, 417429.Google Scholar
Cano García, G.M., (1975). Un ejemplo de Karst macánico en rocas blandas: Las torcas de Guadix. Estudios Geográficos 36, 247263.(libro homenaje a Prof. M.Terán).Google Scholar
Casas, J., Peña, J.A., Vera, J.A., (1976). Interpretación geológica y estratigráfica del yacimiento de la Solana del Zamborino. Cuadernos de Prehistoria de la Universidad de Granada 2, 515.Google Scholar
Casas Morales, A., (1949). La estación prehistórica de los Baños de Alicún (Granada). Actas y Memorias de la Sociedad Española de Antropología. Etnografía y Prehistoria 24, 8593.Google Scholar
Casas Morales, A., (1950). El Paleolítico de los Baños de Alicún. I Congreso Nacional de Arqueología. Almería 4548.Google Scholar
Cerdeño, E., (1989). Rhinocerotidae (Mammalia, Perissodactyla) de la Cuenca de Guadix–Baza. Alberdi, M.T., Bonadona, F.P. Geología y Paleontología de la Cuenca de Guadix–Baza, Museo Nacional de Ciencias Naturales CSIC, Madrid.273288.Google Scholar
Comas, M.C., (1978). Sobre la geología de los Montes Orientales. Sedimentación y Evolución paleogeográfica desde el Jurásico al Mioceno inferior (Zona Subbética, Andalucía).. Tesis Univ. Bilbao, 323 p. In: Olistoliths from the middle Jurassic in Cretaceous materials of the Fardes Formation. Biostratigraphy (Subbetic zone, Betic Cordillera).Google Scholar
Cruz-Sanjulián, J., García-Rosell, L., (1975). Termalismo en España meridional. Boletín Geológico y Minero 86, 179186.Google Scholar
de Abreu, L., Shackleton, N.J., Schönfeld, J., Hall, M., Chapman, M., (2003). Millennial-scale oceanic climate variability off the Western Iberian margin during the last two glacial periods. Marine Geology 196, 120.Google Scholar
Delgado, L., Pascual, A., Ruiz Bustos, J.A., (1993). Geology and micromammels of the Serra-1 site (Tabernas Basin, Betic Cordillera). Estudios Geológicos 49, 361366.Google Scholar
Díaz-Hernández, J.L., Martín, M., Juliá, R., (2000). Depósitos travertínicos de Alicún (Depresión de Guadix, Granada, SE de España). Geogaceta 28, 97100.Google Scholar
Díaz-Hernández, J.L., Martín, M., Juliá, R., (2002). Carbonate deposition rates in neolithic channels linked to Alicún thermal waters (Granada, Spain). Carrasco, F., Durán, J.J., Andreo, B. Karst and Environment 477483.Nerja.Google Scholar
Díaz-Hernández, J.L., Barahona Fernández, E., Linares González, J., (2003). Organic and inorganic carbon in soils of semiarid regions: a case study from the Guadix–Baza basin (Southeast Spain). Geoderma 114, 6580.CrossRefGoogle Scholar
Estévez, A., López-Garrido, A.C., Sanz de Galdeano, C., (1978). Estudio de las deformaciones recientes en el sector del Negratín (Depresión de Guadix–Baza).. Reunión sobre la Geodinámica de las Cordilleras Béticas y el Mar de Alborán. Comisión Nacional para el proyecto Geodinámico, 165192.Google Scholar
FAO-UNESCO(1988). Soil Map of the World. (1988). U.N. Food and Agriculture Organization, Rome.Revised Legend.Google Scholar
Foster, G.C., Dearing, J.A., Jones, R.T., Crook, D.S., Siddle, D.J., Harvey, A.M., James, P.A., Appleby, P.G., Thompson, R., Nicholson, J., Loizeau, J.L., (2003). Meteorological and land use controls on past and present hydro-geomorphic processes in the pre-alpine environment: an integrated lake-catchment study at the Petit Lac d'Annecy, France. Hydrological Processes 17, 32873305.Google Scholar
García Aguilar, J.M., Martín, J.M., (2000). Late Neogene to recent continental history and evolution of the Guadix–Baza basin (SE Spain). Revista de la Sociedad Geológica de España 13, 1 6577.Google Scholar
Gile, L.H., Peterson, F.F., Grossman, R.B., (1966). Morphological and genetic sequences of carbonate accumulation in deserts soils. Soil Science 101, 347360.CrossRefGoogle Scholar
Giralt, S., Julià, R., (1996). The sedimentary record of the Middle–Upper Palaeolothic transition in the Capellades area (NE Spain). Carbonell, E., Vaquero, M. The last Neandertals the First Anatomically Modern Humans. Cultural Change and Human Evolution: The Crisis at 40,000 yr BP 365376.Google Scholar
Goldberg, P., Holliday, V.T., Ferring, C.R., (2001). Earth Sciences and Archaeology. Kluwer Academic Press, 514 pp.CrossRefGoogle Scholar
Goy, J.L., Zazo, C., Dabrio, C.J., Hoyos, M., Civis, J., (1989). Geomorfología y evolución dinámica del sector suroriental de la cuenca de Guadix–Baza (área Baza–Caniles). Trabajos sobre el Neógeno-Cuaternario 11, 97111.Google Scholar
Harvey, A.M., (2002). The role of base-level change in the disection of alluvial fans: case studies from SE Spain and Nevada. Geomorphology 45, 6787.Google Scholar
Harvey, A.M., Wells, S.G., (2003). Late Quaternary alluvial fan development, relations to climatic change, Soda Mountains, Mojave Desert, California. Lancaster, N., Enzel, Y., Wells, S.G. Environmental Change in The Mojave Desert. Geological Society of America 368, 207230.Sp. paper.Google Scholar
Holliday, V.T., (1994). Soil formation, time and archaeology. Holliday, V.T. Soils in Archaeology: Landscape Evolution and Human Occupation Smithsonian Inst. Press, 101118.Google Scholar
Ivanovich, M., Harmon, R.S., (1992). Uranium-Series Disequilibrium: Application to Earth, Marine and Environmental Sciences. 2nd ed. Clarendon Press, Oxford.910 pp.Google Scholar
Kelly, M., Black, S., Rowan, J.S., (2000). A calcrete based U/Th chronology for landform evolution in the Sorbas basin, southeast Spain. Quaternary Science Reviews 9, 9951010.Google Scholar
Ku, T.L., Bull, W.B., Freeman, S.T., Knauss, K.G., (1979). 230Th–234U dating of pedogenic carbonates in gravelly desert soils of Vidal Valley, Southeastern California. Geological Society of America Bulletin 90, 10631073.2.0.CO;2>CrossRefGoogle Scholar
Martín Penela, A.J., (1987). Los grandes mamíferos del yacimiento achelense de la Solana del Zamborino (Fonelas, Granada). Antropología y Paleoecología Humana 5, 29188.Google Scholar
Mather, A.E., Stokes, M., Griffiths, J.S., (2002). Quaternary landscape evolution: a framework for understanding contemporary erosion, southeast Spain. Land Degradation and Development 13, 89109.Google Scholar
Mederos, A., (1995). La cronología absoluta de la prehistoria reciente del Sureste de la Península Ibérica. Pyrenae 26, 5390.Google Scholar
Ministerio de Agricultura Pesca y Alimentación (MAPA), . Caracterización agroclimática de la provincia de Granada.. Ediciones de la Secretaría General Técnica del M.A.P.A .Google Scholar
Mulligan, M., (1998). Modelling the geomorphological impact of climatic variability and extreme events in a semi-arid environment. Geomorphology 24, 5978.Google Scholar
Pécsi, M., (1973). Geomorphological position and absolute age of the lower paleolithic site at Vértesszöllös, Hungary. Magyar Tudomanyos Akademia, Földrajztudomanyi Kutatocsoport Intézet. Földrajzïköz 2, 109119.Google Scholar
Pentecost, A., (1995). The Quaternary travertine deposits of Europe and Asia Minor. Quaternary Science Reviews 14, 10051028.Google Scholar
Peña, J.A., (1985). La Depresión de Guadix–Baza. Estudios Geológicos 41, 3346.Google Scholar
Poesen, J., Valentin, C., (2003). Gully Erosion and Global Change. Catena 50(2–4), 87563.Google Scholar
Romero Díaz, M.A., (1989). Las cuencas de los Ríos Castril y Guardal (cabecera del Guadalquivir).. Estudio hidrogeomorfológico. Ed. Excmo. Aytmo . de Huéscar (Granada)-Univ. de Murcia, 285 pp.Google Scholar
Ruiz Bustos, J.A., (1999). Biostratigraphic and paleoecological synthesis of the Plio-Quaternary mammal data in the betic cordillera.. In: Consejería de Cultura, Junta de Andalucía (Ed.), The Guadix–Baza Basin (Andalucía, Spain) and the chronostratigraphy of the terrestrial Plio–Pleistocene in Europe, Orce, pp. 1719.Google Scholar
Ruiz Bustos, J.A., (2002). Mammals biostratigraphy and palaeoecology of the Pliocene continental deposits in the Betic Cordillera. Pliocenica 2, 4464.Google Scholar
Ruiz Bustos, J.A., (2003). Eventos evolutivos en el valle del Guadalquivir. Un medio para inferir el hábitat de los homínidos pleistocenos. Pliocenica 3, 3045.Google Scholar
Schönfeld, J., Zahn, R., de Abreu, L., (2003). Surface and deep water response to rapid climate changes at the Western Iberian margin. Global and Planetary Change 36, 237264.Google Scholar
Schulte, L., (2002). Evolución cuaternaria de la depresión de Vera y de Sorbas oriental (SE-Península Ibérica). Reconstrucción de las fluctuaciones paleoclimáticas a partir de estudios morfológicos y edafológicos. Universidad de Barcelona, Barcelona.267 pp.Google Scholar
Schumm, S.A., Hadley, R.F., (1957). Arroyos and the semiarid cycle of erosion. American Journal of Science 255, 161174.Google Scholar
Schwarcz, H.P., (1980). Absolute age determination of archaeological sites by uranium series dating of travertines. Archaeometry 22, 324.Google Scholar
Sharp, W.D., Ludwig, K.R., Chadwick, O.A., Amundson, R., Glaser, L.L., (2003). Dating fluvial terraces by 230Th on pedogenic carbonate, Wind River Basin, Wyoming. Quaternary Research 59, 139150.CrossRefGoogle Scholar
Soligo, M., Tuccimei, P., Barberi, R., Delitala, M.C., Miccadei, E., Taddeucci, A., (2002). U/Th dating of freshwater travertine from Middle Velino Valley (Central Italy): paleoclimatic and geological implications. Palaeogeography, Palaeoclimatology, Palaeoecology 184, 147161.CrossRefGoogle Scholar
Thornes, J.B., Gilman, A., (1983). Potential and actual erosion around archaeological sites in southeast Spain. Catena, Suppl. 4, 91113.(Rainfall Simulation runoff and Soil erosion).Google Scholar
Tuffreau, A., (1979). Les débuts du paléolithique moyen dans la France septentrionale. Bulletin de la Société préhistorique de France, Paris 76, 140142.Google Scholar
Vega Toscano, L.G., (1989). Ocupaciones humanas en el Pleistoceno de la Depresión de Guadix–Baza: elementos de discusión. Alberdi, M.T., Bonadona, F.P. Geología y Paleontología de la Cuenca de Guadix–Baza, Museo Nacional de Ciencias Naturales CSIC, Madrid.327346.Google Scholar
Vera, J.A., (1970). Estudio estratigráfico de la Depresión de Guadix–Baza. Boletín Geológico y Minero 81, 429462.Google Scholar
Viseras, C., Fernández, J., (1992). Sedimentary basin destruction inferred from the evolution of drainage systems in the Betic Cordillera, southern Spain. Journal of the Geological Society 149, 10211029.Google Scholar
Wise, S.M., Thornes, J.B., Gilman, A., (1982). How old are the badlands?. A case study from SE Spain. Bryan, R.B., Yair, A. Badlands Geomorphology and Piping Geobooks, Norwich.259277.Google Scholar