Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-28T22:20:52.078Z Has data issue: false hasContentIssue false

Evaluation of the regional vegetation and climate in the Eastern Alps (Austria) during MIS 3–4 based on pollen analysis of the classical Baumkirchen paleolake sequence

Published online by Cambridge University Press:  07 June 2018

Samuel Jonathan Barrett*
Affiliation:
Institute of Geology, University of Innsbruck, 6020 Innsbruck, Austria
Ruth Drescher-Schneider
Affiliation:
Institute of Plant Sciences, Karl-Franzens University of Graz, Holteigasse 6, 8010 Graz, Austria
Reinhard Starnberger
Affiliation:
Institute of Geology, University of Innsbruck, 6020 Innsbruck, Austria
Christoph Spötl
Affiliation:
Institute of Geology, University of Innsbruck, 6020 Innsbruck, Austria
*
*Corresponding author at: GeoVille GmbH, Sparkassenplatz 2, 3rd floor, A-6020 Innsbruck, Austria. E-mail address: sbarrettphd@gmail.com (S.J. Barrett).

Abstract

The pre-last glacial maximum paleolake sediments at Baumkirchen, western Austria, are well known in Alpine Quaternary stratigraphy as being the type locality of the Middle to Upper Würmian transition. Their location provides a rare opportunity to investigate the vegetation history of the interior of the Alps during the last glacial cycle. A recent renewed research effort involving new drilling revealed a 250-m-thick lacustrine sequence with an older, ca. Marine Oxygen Isotope Stage (MIS) 4 phase and a younger, mid- to late MIS 3 phase. Pollen analysis reveals generally poor preservation and very low pollen concentration due to very high sedimentation rates. On the basis of pollen percentages and influx rates, six pollen zones (PZ) were assigned. PZ1 and 2 correspond to the entire ca. MIS 4 section and are characterized by only scattered vegetation representing an extremely cold and dry climate. Two stadials and two interstadials were identified in the MIS 3 section. The interstadials are characterized by well-developed open vegetation with some stands of trees, with the upper PZ6 being better developed but still forest-free. On the basis of previous radiocarbon dating, this zone (PZ6) is correlated to Greenland Interstadial (GI) 7 and the lower interstadial (PZ4) tentatively to GI 8.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ammann, B., 1984. Prozente, Konzentrationen und Durchschnitts-Influx der Pollenzonen im Spätglazial vom Lobsigensee. (Studien zum Spät-Quartär des Lobsigensees, 10). Dissertationes Botanicae 72, 1144.Google Scholar
Ammann, B., 1989. Late-Glacial palynology at Lobsigensee. Regional vegetation history and local Lake development. Dissertationes Botanicae 137, 1157.Google Scholar
Barrett, S.J., 2017. The Baumkirchen Palaeolake Record: Insights into the Palaeoclimate and Palaeogeography of the Eastern Alps during MIS 3 and 4. PhD dissertation, University of Innsbruck, Innsbruck, Austria.Google Scholar
Barrett, S.J., Starnberger, R., Tjallingii, R., Brauer, A., Spötl, C., 2017. The sedimentary history of the inner-alpine Inn Valley (Austria): extending the Baumkirchen type section further back in time with new drilling. Journal of Quaternary Science 32, 6379.Google Scholar
Berglund, B.E., Ralska-Jasiewiczowa, M., 1986. 22 Pollen analysis and pollen diagrams. In: Berglund, B.E., Ralska-Jasiewiczowa, M. (Eds.), Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley and Sons, Chichester, pp. 455484.Google Scholar
Beug, H.J., 2004. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil Verlag, Munich.Google Scholar
Blaas, J., 1885. Über die Glazialformation im Innthale. Zeitschrift des Museums Ferdinandeum für Tirol und Vorarlberg 3, 1120.Google Scholar
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.Google Scholar
Boch, R., Cheng, H., Spötl, C., Edwards, R.L., Wang, X., Häuselmann, P., 2011. NALPS: a precisely dated European climate record 120–60ka. Climate of the Past 7, 12471259.Google Scholar
Bortenschlager, I., Bortenschlager, S., 1978. Pollenanalytische Untersuchungen am Bänderton von Baumkirchen (Inntal, Tirol). Zeitschrift für Gletscherkunde und Glazialgeologie 14, 95103.Google Scholar
Bortenschlager, S., 1972. Der pollenanalytische Nachweis von Gletscher- und Klimaschwankungen in den Mooren der Ostalpen. Berichte der Deutschen Botanischen Gesellschaft 85, 113122.Google Scholar
Bortenschlager, S., 1984. Die Vegetationsentwicklung im Spätglazial: Das Moor beim Lanser See III, ein Typprofil für die Ostalpen. Dissertationes Botanicae 72, 7179.Google Scholar
Bos, J.A.A., Helmens, K.F., Bohncke, S.J.P., Seppä, H., Birks, H.J.B., 2009. Flora, vegetation and climate at Sokli, northwestern Fennoscandia, during the Weichselian Middle Pleniglacial. Boreas 38, 335348.Google Scholar
Brandstetter, M., 2007. Der Brandkrustenpilz (Ustulina deusta) – eine fast unsichtbare Gefährdung für zahlreiche Laubbäume. Forstschutz Aktuell 38, 1820.Google Scholar
Burga, C., 1984. Aktuelle Vegetation und Pollengehalt von Oberflächenproben der obermontanen bis subalpinen Stufe am Bernhardin-Pass (Graubünden Schweiz). Jahresbericht der Naturwissenschaftlichen Gesellschaft Graubünden 101, 5399.Google Scholar
Chaline, J., Jerz, H., 1984. Arbeitsergebnisse der Subcommission für Quartärstratigraphie. Stratotypen des Würm-Glazials. Eiszeitalter und Gegenwart 35, 185206.Google Scholar
Cookson, I.C., 1947. Plant microfossils from the lignites of Kerguelen Archipelago. British, Australian, New Zealand Antarctic Research expedition 1929–1931 Reports Series A 2, 127142.Google Scholar
de Beaulieu, J.-L., Reille, M., 1992. The last Glacial cycle at La Grande Pile (Vosges, France): a new pollen profile. Quaternary Science Reviews 11, 431438.Google Scholar
Dehnert, A., Lowick, S.E., Preusser, F., Anselmetti, F.S., Drescher-Schneider, R., Graf, H.R., Heller, F., et al., 2012. Evolution of an overdeepened trough in the northern Alpine Foreland at Niederweningen, Switzerland. Quaternary Science Reviews 34, 127145.Google Scholar
Drescher-Schneider, R., 2008. Some known and unknown NPPs in two lakes in Austria. In: Maritan, M., Miola, A. (Eds.), 3rd International Workshop on Quaternary Non-Pollen Palynomorphs, Università degli Studi di Padova, Department of Biology June 25–28th, Program and Abstracts. Università di Padova, Padova, pp. 1516.Google Scholar
Drescher-Schneider, R., Jacquat, C., Schoch, W., 2007. Palaeobotanical investigations at the mammoth site of Niederweningen (Kanton Zürich), Switzerland. Quaternary International 164–165, 113129.Google Scholar
Festi, D., Kofler, W., Bucher, E., Carturan, L., Mair, V., Gabrielli, P., Oeggl, K., 2015. A novel pollen-based method to detect seasonality in ice cores: a case study form the Ortles glacier, South Tyrol, Italy. Journal of Glaciology 61, 815824.CrossRefGoogle Scholar
Fletcher, W.J., Sánchez Goñi, M.F., Allen, J.R.M., Cheddadi, R., Combourieu-Nebout, N., Huntley, B., Lawson, I., et al., 2010. Millennial-scale variability during the last glacial in vegetation records from Europe. Quaternary Science Reviews 29, 28392864.Google Scholar
Fliri, F., 1973. Beiträge zur Geschichte der alpinen Würmvereisung: Forschungen am Bänderton von Baumkirchen (Inntal, Nordtirol). Zeitschrift für Geomorphologie 16, 114.Google Scholar
Fliri, F., Bortenschlager, S., Felber, H., Heissel, W., Hilscher, H., Resch, W., 1970. Der Bänderton von Baumkirchen (Inntal, Tirol). Eine Schlüsselstelle zur Kenntnis der Würm-Vereisung der Alpen. Zeitschrift für Gletscherkunde und Glazialgeologie 6, 535.Google Scholar
Fliri, F., Felber, H., Hilscher, H., 1972. Weitere Ergebnisse der Forschung am Bänderton von Baumkirchen. Zeitschrift für Gletscherkunde und Glazialgeologie 8, 203213.Google Scholar
Fliri, F., Hirscher, H., Markgraf, V., 1971. Weitere Untersuchungen zur Chronologie der alpinen Vereisung (Bänderton von Baumkirchen, Inntal, Nordtirol). Zeitschrift für Gletscherkunde und Glazialgeologie 7, 524.Google Scholar
Florineth, D., Schlüchter, C., 2000. Alpine evidence for atmospheric circulation patterns in Europe during the Last Glacial Maximum. Quaternary Research 54, 295308.Google Scholar
Geel, B. van, 1976. A Paleoecological Study of Holocene Peat Bog Sections, based on the Analysis of Pollen, Spores and Macro and Microscopic Remains of Fungi, Algae, Cormophytes and Animals. Academisch Proefschrift, Hugo de Vries laboratory. Universiteit van Amsterdam, Amsterdam.Google Scholar
Geel, B. van, Andersen, S.T., 1988. Fossil ascospores of the parasitic fungus Ustulina deusta in Eemian deposits in Denmark. Review of Palaeobotany and Palynology 56, 8993.CrossRefGoogle Scholar
Grimm, E.C., 1987. CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13, 1335.Google Scholar
Grimm, E.C., 2004–2014. TILIA version 2.0.33. Illinois State Museum, Springfield, IL. http://www.TiliaIT.com.Google Scholar
Heiri, O., Koinig, K.A., Spötl, C., Barrett, S., Brauer, A., Drescher-Schneider, R., Gaar, D., et al., 2014. Palaeoclimate records 60–8 ka in the Austrian and Swiss Alps and their forelands. Quaternary Science Reviews 106, 186205.Google Scholar
Helmens, K.F., 2014. The Last Interglacial-Glacial cycle (MIS 5-2) re-examined based on long proxy records from central and northern Europe. Quaternary Science Reviews 86, 115143.Google Scholar
Huber, K., Weckström, K., Drescher-Schneider, R., Knoll, J., Schmidt, J., Schmidt, R., 2010. Climate changes during the last glacial termination inferred from diatom based temperatures and pollen in a sediment core from Längsee (Austria). Journal of Paleolimnology 43, 131147.Google Scholar
Köhler, M., Resch, W., 1973. Sedimentologische, geochemische und bodenmechanische Daten zum Bänderton von Baumkirchen (Inntal/Tirol). Veröffentlichungen der Universität Innsbruck 86, 181215.Google Scholar
Kuhry, P., 1985. Transgression of a raised bog across a coversand ridge originally covered with an oak-lime forest. Palaeoecological study of a Middle Holocene local vegetation succession in the Amstven (northwest Germany). Review of Palaeobotany and Palynology 44, 303353.Google Scholar
Litt, T., Behre, K.-E., Meyer, K.-D., Stephan, H.-J., Wansa, S., 2007. Stratigraphische Begriffe für das Quartär des norddeutschen Vereisungsgebietes. E & G Quaternary Science Journal 56, 765.CrossRefGoogle Scholar
Lotter, A., 1985. Amsoldingersee - Late-glacial and Holocene environments of a lake at the southern edge of the Swiss plateau. Dissertationes Botanicae 87, 185208.Google Scholar
Miola, A., 2012. Tools for Non-Pollen Palynomorphs (NPPs) analysis: a list of Quaternary NPP types and reference literature in English language (1972–2011). Review of Palaeobotany and Palynology 186, 142161.Google Scholar
Monegato, G., Ravazzi, C., Culiberg, M., Pini, R., Bavec, M., Calderoni, G., Jež, J., Perego, R., 2015. Sedimentary evolution and persistence of open forests between the south-eastern Alpine fringe and the Northern Dinarides during the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 436, 2340.Google Scholar
Moseley, G.E., Spötl, C., Svensson, A., Cheng, H., Brandstätter, S., Edwards, R.L., 2014. Multi-speleothem record reveals tightly coupled climate between central Europe and Greenland during Marine Isotope Stage 3. Geology 42, 10431046.Google Scholar
Müller, U., 2001. Die Vegetations- und Klimaentwicklung im jüngeren Quartär anhand ausgewählter Profile aus dem südwestdeutschen Alpenvorland. Tübinger Geowissenschaftliche Arbeiten D7, 1118.Google Scholar
Müller, U.C., Pross, J., Bibus, E., 2003. Vegetation response to rapid climate change in Central Europe during the past 140,000 yr based on evidence from the Füramoos pollen record. Quaternary Research 59, 235245.Google Scholar
Nigst, P.R., Haesaerts, P., Damblon, F., Frank-Fellner, C., Mallol, C., Viola, B., Götzinger, M., Niven, L., Trnka, G., Hublin, J.J., 2014. Early modern human settlement of Europe north of the Alps occurred 43,500 years ago in a cold steppe-type environment. Proceedings of the National Academy of Sciences of the United States of America 111, 14,39414,399.Google Scholar
North Greenland Ice Core Project Members. 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147151.Google Scholar
Penck, A., 1890. Die Glacialschotter in den Ostalpen. Mitteilungen des Deutschen und Oesterreichischen Alpenvereins 23, 289292.Google Scholar
Pini, R., Ravazzi, C., Donegana, M., 2009. Pollen stratigraphy, vegetation and climate history of the last 215 ka in the Azzano Decimo core (plain of Friuli, north-eastern Italy). Quaternary Science Reviews 28, 12681290.Google Scholar
Pini, R., Ravazzi, C., Reimer, P.J., 2010. The vegetation and climate history of the last glacial cycle in a new pollen record from Lake Fimon (southern Alpine foreland, N-Italy). Quaternary Science Reviews 29, 31153137.CrossRefGoogle Scholar
Preusser, F., 1999. Luminescence dating of fluvial sediments and overbank deposits from Gossau, Switzerland: fine grain dating. Quaternary Geochronology 18, 217222.Google Scholar
Preusser, F., Geyh, M.A., Schlüchter, C., 2003. Timing of Late Pleistocene climate change in lowland Switzerland. Quaternary Science Reviews 22, 14351445.Google Scholar
Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B., Cvijanovic, I., et al., 2014. A stratigraphic frame for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106, 1428.Google Scholar
Ravazzi, C., Badino, F., Marsetti, D., Patera, G., Reimer, P.J., 2012. Glacial to paraglacial history and forest recovery in the Oglio glacial system (Italian Alps) between 26 and 15 ka cal BP. Quaternary Science Reviews 58, 146161.Google Scholar
Ravazzi, C., Pini, R., Badino, F., De Amicis, M., Londeix, L., Reimer, P.J., 2014. The latest LGM culmination of the Garda Glacier (Italian Alps) and the onset of glacial termination: age of glacial collapse and vegetation chronosequence. Quaternary Science Reviews 105, 2647.Google Scholar
Sarnthein, R.V., 1937. Untersuchungen über den Pollengehalt einiger Moränen und Terrassensedimente des Inntales. Zeitschrift für Gletscherkunde 25, 232236.Google Scholar
Scheuer, C., 1996. Neuere Funde von Arthrinum-Arten (Hyphomycetes, Fungi imperfecti) aus Österreich. Österreichische Zeitschrift für Pilzkunde 5, 121.Google Scholar
Schlüchter, C., Maisch, M., Suter, J., Fitze, P., Keller, W.A., Burga, A.C., Wynistorf, E., 1987. Das Schieferkohlen-Profil von Gossau (Kanton Zürich) und seine stratigraphische Stellung innerhalb der letzten Eiszeit. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 132, 135174.Google Scholar
Seierstad, I.K., Abbott, P.M., Bigler, M., Blunier, T., Bourne, A.J., Brook, E., Buchardt, S.L., et al., 2014. Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint. Quaternary Science Reviews 106, 2946.Google Scholar
Spötl, C., Mangini, A., Richard, D.A., 2006. Chronology and paleoenvironment of Marine Isotope Stage 3 from two high-elevation speleothems, Austrian Alps. Quaternary Science Reviews 25, 11271136.Google Scholar
Spötl, C., Reimer, P.J., Rabeder, G., Scholz, D., 2014. Presence of cave bears in western Austria before the onset of the Last Glacial Maximum: new radiocarbon dates and palaeoclimatic considerations. Journal of Quaternary Science 29, 760766.Google Scholar
Spötl, C., Reimer, P.J., Starnberger, R., Reimer, R.W., 2013. A new radiocarbon chronology of Baumkirchen, stratotype for the onset of the Upper Würmian in the Alps. Journal of Quaternary Science 28, 552558.CrossRefGoogle Scholar
Starnberger, R., Drescher-Schneider, R., Reitner, R.M., Rodnight, H., Reimer, P.J., Spötl, C., 2013a. Late Pleistocene climate change and landscape dynamics in the Eastern Alps: the inner-alpine Unterangerberg record (Austria). Quaternary Science Reviews 68, 1742.Google Scholar
Starnberger, R., Rodnight, H., Spötl, C., 2013b. Luminescence dating of fine-grain lacustrine sediments from the Late Pleistocene Unterangerberg site (Tyrol, Austria). Austrian Journal of Earth Sciences 106, 415.Google Scholar
Stockmarr, J., 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, 615621.Google Scholar
Wagner, H., 1985. Die natürliche Pflanzendecke Österreichs. In: Bobek H. (Ed.), Beiträge zur Regionalforschung 6. Kommission für Regionalforschung der Österreichischen Akademie der Wissenschaften, Vienna, pp. 163.Google Scholar
Wick, L., 2000. Vegetational response to climatic changes recorded in Swiss Late Glacial lake sediments. Palaeogeography, Palaeoclimatology, Palaeoecology 159, 231250.Google Scholar
Supplementary material: File

Barrett et al. supplementary material

Barrett et al. supplementary material 1

Download Barrett et al. supplementary material(File)
File 12.3 KB