Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-05T07:24:28.626Z Has data issue: false hasContentIssue false

The Eemian Interglaciation in Northwestern Germany

Published online by Cambridge University Press:  20 January 2017

Gerfried Caspers*
Affiliation:
Niedersächsisches Landesamt für Bodenforschung, Stilleweg 2, Hannover, D-30655, Germany
Josef Merkt
Affiliation:
Niedersächsisches Landesamt für Bodenforschung, Stilleweg 2, Hannover, D-30655, Germany
Helmut Müller
Affiliation:
Niedersächsisches Landesamt für Bodenforschung, Stilleweg 2, Hannover, D-30655, Germany
Holger Freund
Affiliation:
Institut für Geobotanik, Universität Hannover, Nienburger Strasse 17, Hannover, D-30167, Germany
*
1To whom correspondence should be addressed. E-mail: G.Caspers@bgr.de.

Abstract

Hundreds of small lakes became filled with Eemian deposits following the retreat of Saalian ice in northwestern Germany. Weakly expressed climate oscillations have been inferred from some local pollen records of Late Saalian sediments. Sea level stood 7 m below the current northwest German sea-level datum (NN) during the interglacial climate optimum and decreased afterward. A uniform vegetational succession of the Eemian mixed forests, correlated with marine isotope stage (MIS) 5e, terminated with the demise of boreal woodlands marked by a steep increase in nonarboreal pollen. This is the onset of the early Weichselian Herning Stade, correlated with MIS 5d. No sharp climate oscillations during the Eemian have been documented. In the ending phase of the interglaciation, the climate deteriorated gradually. Dominant heath and grass tundras point to a substantial decline of summer temperature during the Herning Stade. Sea level then stood at −40 m NN. Sedimentological considerations, supported by counts of partly varved deposits, indicate that the Eemian lasted about 10,000–11,000 yr and the Herning for several millennia.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aalbersberg, G., and Litt, T. Multiproxy climatic reconstructions for the Eemian and Early Weichselian. Journal of Quaternary Science 13, (1998). 367 390.3.0.CO;2-I>CrossRefGoogle Scholar
Caspers, G. Die eem- und weichselzeitliche Hohlform von Groß Todtshorn (Kr. Harburg; Niedersachsen)—Geologische und palynologische Untersuchungen zu Vegetation und Klimaverlauf der letzten Kaltzeit. Schriftenreihe Deutsche Geologische Gesellschaft 4, (1997). 7 59.Google Scholar
Caspers, G., and Freund, H. Vegetation and climate in the Early and Pleni-Weichselian in northern central Europe. Journal of Quaternary Science 16, (2001). 31 48.3.0.CO;2-3>CrossRefGoogle Scholar
de Gans, W., Beets, D.J., and Centineo, M.C. Late Saalian and Eemian deposits in the Amsterdam glacial basin. Geologie and Mijnbouw 79, (2000). 147 160.CrossRefGoogle Scholar
Freund, H. Die Bohrung Rathenow (Landkreis Havelland; Brandenburg)—eine Abfolge limnischer Sedimente vom Saale-Spätglazial, Eem-Interglazial bis in das Weichsel-Frühglazial. Brandenburgische Geowissenschaftliche Beiträge 7, (2000). 151 159.Google Scholar
Freund, H., and Caspers, G. Vegetation und Paläoklima der Weichsel-Kaltzeit im nördlichen Mitteleuropa—Ergebnisse paläobotanischer,—faunis- tischer und geologischer Untersuchungen. Schriftenreihe Deutsche Geologische Gesellschaft 4, (1997). 7 249.Google Scholar
Freund, H., Meyer, K.-J., Caspers, G., and Höfle, H.-C. Pollenstratigraphische Untersuchungen zum Eem-Interglazial und Brörup-Interstadial von Barendorf. Schriftenreihe Deutsche Geologische Gesellschaft 4, (1997). 157 174.Google Scholar
Grüger, E. Late Quaternary biostratigraphy in northern Germany 150,000–15,000 years B.P. Striae 34, (1991). 7 14.Google Scholar
Hahne, J., Kemle, S., Merkt, J., and Meyer, K.-D. Eem-, weichsel- und saalezeitliche Ablagerungen der Bohrung. Geologisches Jahrbuch A 134, (1994). 9 69.Google Scholar
Harting, P. De bodem van het Eemdal. Verslogen Koninklijke Akademie Wetenschaffen 2nd Reeks VIII, (1874). 282 290.Google Scholar
Litt, T. Paläoökologie Paläobotanik und Stratigraphie des Jungquartärs im nordmitteleuropäischen Tiefland—unter besonderer Berücksichtigung des Elbe-Saale-Gebietes. Dissertationes Botanicae 227, (1994). 1 185.Google Scholar
Litt, T., Junge, F.W., and Böttcher, T. Climate during the Eemian in north central Europe—A critical review of the palaeobotanical and stable isotope data from central Germany. Vegetation History and Archaeobotany 5, (1996). 247 256.CrossRefGoogle Scholar
Menke, B., and Ross, P.H. Der erste Fund von Kieselgur in Schleswig-Holstein bei Brokenlande südlich von Neumünster. Mit einem Beitrag zur Gliederung des Saale-Spätglazial. Eiszeitalter und Gegenwart 18, (1967). 113 126.Google Scholar
Menke, B., and Tynni, R. Das Eeminterglazial und das Weichselfrühglazial von Rederstall/Dithmarschen und ihre Bedeutung für die mitteleuropäische Jungpleistozän-Gliederung. Geologisches Jahrbuch A 76, (1984). 3 120.Google Scholar
Müller, H. Pollenanalytische Untersuchungen und Jahresschichtenzählung an der eemzeitlichen Kieselgur von Bispingen/Luhe. Geologisches Jahrbuch A 21, (1974). 149 169.Google Scholar
Selle, W. Geologische und vegetationskundliche Untersuchungen an einigen wichtigen Vorkommen des letzten Interglazials in Nordwestdeutschland. Geologisches Jahrbuch 79, (1962). 295 352.Google Scholar
Streif, H. Quaternary sea-level changes in the North Sea, an analysis of amplitudes and velocities. Brosche, , Sunderman, Earth's Rotation from Eons to Days. (1990). 201 214.Google Scholar
Turner, C. The Eemian interglacial in the North European plain and adjacent areas. Geologie and Mijnbouw 79, (2000). 217 231.CrossRefGoogle Scholar
Zagwijn, W.H. Sea-level changes in the Netherlands during the Eemian. Geologie en Mijnbouw 62, (1983). 437 450.Google Scholar
Zagwijn, W.H. An analysis of Eemian climate in western and central Europe. Quaternary Sciences Reviews 15, (1996). 451 469.CrossRefGoogle Scholar