Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T22:30:13.581Z Has data issue: false hasContentIssue false

Cold–temperate transition surface and permafrost base (CTS-PB) as an environmental axis in glacier–permafrost relationship, based on research carried out on the Storglaciären and its forefield, northern Sweden

Published online by Cambridge University Press:  14 September 2017

Wojciech Dobiński*
Affiliation:
University of Silesia, Faculty of Earth Sciences, ul. Będzińska 60, 41-200 Sosnowiec, Poland
Mariusz Grabiec
Affiliation:
University of Silesia, Faculty of Earth Sciences, ul. Będzińska 60, 41-200 Sosnowiec, Poland
Michał Glazer
Affiliation:
University of Silesia, Faculty of Earth Sciences, ul. Będzińska 60, 41-200 Sosnowiec, Poland Centre for Polar Studies KNOW (Leading National Research Centre), University of Silesia, Faculty of Earth Sciences, ul. Będzińska 60, 41-200 Sosnowiec, Poland
*
*Corresponding author at: University of Silesia, Faculty of Earth Sciences, ul. Będzińska 60, 41-200 Sosnowiec, Poland. E-mail address: wojciech.dobinski@us.edu.pl (W. Dobiński).

Abstract

Here, we present empirical ground penetrating radar (GPR) and electroresistivity tomography data (ERT) to verify the cold-temperate transition surface-permafrost base (CTS-PB) axis theoretical model. The data were collected from Storglaciären, in Tarfala, Northern Sweden, and its forefield. The GPR results show a material relation between the glacial ice and the sediments incorporated in the glacier, and a geophysical relation between the “cold ice” and the “temperate ice” layers. Clearly identifying lateral glacier margins is difficult, as periglacial and glacial environments frequently overlap. In this case, we identified areas showing permafrost aggradation already under the glacier, particularly where the CTS is replaced by the PB surface. This structure appears as a result of the influence of a cold climate over both the glacial and periglacial environments. The results show how these surfaces form a specific continuous environmental axis; thus, both glacial and periglacial areas can be treated uniformly as a specific continuum in the geophysical sense. Similarly, other examples previously described also allow identifying a continuation of permafrost from the periglacial environment onto the glacial base. In addition, the ERT results show the presence of double-layered periglacial permafrost, possibly suggesting a past climatic fluctuation in the study area.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alley, R.B., 1989. Water pressure coupling of sliding and bed deformation: II, velocity-depth profiles. Journal of Glaciology 35: 119129.Google Scholar
Bazhev, A.B., 1997. Methods determining the internal infiltration accumulation of glaciers. In: Kotlyakov, V.M. (Ed.), 34 Selected papers on main ideas of the Soviet Glaciology, 1940s–1980s. Institute of Geography, Russian Academy of Sciences, Moscow, pp. 371381.Google Scholar
Bernard, É., Friedt, J.M., Saintenoy, A., Tolle, F., Griselin, M., Marlin, C., 2014. Where does a glacier end? GPR measurements to identify the limits between valley slopes and actual glacier body. Application to the Austre Lovénbreen, Spitsbergen. International Journal of Applied Earth Observation and Geoinformation 27: 100108.Google Scholar
Björnsson, H., Gjessing, Y., Hamran, S.E., Hagen, J.O., Liestol, O., Palsson, F., Erlingsson, B., 1996. The thermal regime of sub-polar glaciers mapped by multi-frequency radio-echo sounding. Journal of Glaciology 42: 2332.Google Scholar
Black, R.F., 1954. Permafrost: a review. Geological Society of America Bulletin 65(9), 839856.Google Scholar
Black, R.F., 1976. Features indicative of permafrost. Earth and Planetary Sciences 4: 7594.Google Scholar
Blatter, H., 1990. Effect of climate on cryosphere. Climatic Conditions and the polythermal structure of glaciers. Federal Institute of Technology, 190 Zürich.Google Scholar
Blatter, H., Hutter, K., 1991. Polythermal conditions in arctic glaciers. Journal of Glaciology 37: 261269.Google Scholar
Boulton, G.S., Hindmarsh, R.C.A., 1987. Sediment deformation beneath glaciers: rheology and geological consequences. Journal of Geophysical Research 92: 90599082.Google Scholar
Brodzikowski, K., van Loon, A.J., 1991. Glacigenic Sediments Developments in Sedimentology, Vol. 49. Elsevier, Amsterdam.Google Scholar
Dahlin, T., Zhou, B., 2004. A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophysical Prospering 52: 379398.Google Scholar
Dahlke, H.E., Lyon, S.W., Stedinger, J.R., Rosqvist, G., Jansson, P., 2012. Contrasting trends in floods for two sub-arctic catchments in northern Sweden – does glacier presence matter? Hydrology and Earth System Sciences 16: 21232141.Google Scholar
Dobiński, W., 2006. Ice and environment: a terminological discussion. Earth Science Reviews 79: 229240.Google Scholar
Dobiński, W., 2011a. Permafrost. Earth Science Reviews 108: 158169.Google Scholar
Dobiński, W., 2011b. Wieloletnia zmarzlina w wybranych obszarach Tatr, Gór Skandynawskich i Spitsbergenu w świetle kompleksowych badań geofizycznych i analiz klimatologicznych. [In Polish with English abstract.] Prace Naukowe Uniwersytetu Śląskiego Nr 2850, Wydawnictwo Uniwersytetu Śląskiego, Katowice.Google Scholar
Dobiński, W., 2012. The cryosphere and glacial permafrost as its integral component. Central European Journal of Geosciences 4: 623640.Google Scholar
Dobiński, W., Grabiec, M., Gadek, B., 2011. Spatial relationship in interaction between glacier and permafrost in different mountainous environments of high and mid latitudes, based on GPR research. Geological Quarterly 55: 375388.Google Scholar
Dobiński, W., Glazer, M., 2016. Active and fossil permafrost in the glacier–permafrost system. Storglaciären, Kebnekaise, Northern Sweden. In: Gunter, F., Morgenstern, A., (Eds.), 11th International Conference On Permafrost: Exploring Permafrost in a Future Earth, Book of Abstracts. Potsdam, Germany, pp. 316–318.Google Scholar
Dobrowolski, A. B., 1953. Petrografia lodu a pojęcie linii brzegowej lodu polarnego (Petrography of ice and criterion of the land border). [In Polish.] Acta Geologica Polonica 3: 190192. (In Polish)Google Scholar
Embleton, C., King, C.A.M., 1975. Periglacial Geomorphology. Edward Arnold, London, 203 pp.Google Scholar
Etzelmüller, B., Hagen, J.O., 2005. Glacier-permafrost interaction in Arctic and alpine mountain environments with examples from southern Norway and Svalbard. In: Harris, C., Murton, J.B. (Eds.), Cryospheric Systems: Glaciers and Permafrost Geological Society of London Special Publication No. 242. Geological Society of London, London, pp. 1127.Google Scholar
Everdingen, van R.O. (Ed.), 1998. Multi-Language Glossary of Permafrost and Related Ground-Ice Terms. Artic Institute of North America, Calgary.Google Scholar
French, H. M., 2007. The Periglacial Environment. 3rd ed. Wiley, Chichester.Google Scholar
French, H., Thorn, C.E., 2006. The changing nature of periglacial geomorphology. Géomorphologie: Relief, Processus, Environnement 12: 133.Google Scholar
Fuchs, M., 2013. Soil Organic Carbon Inventory and Permafrost Mapping in Tarfala Valley, Northern Sweden: A First Estimation of the Belowground Soil Organic Carbon Storage in a Sub-Arctic High Alpine Permafrost Environment. Master’s thesis, Department for Physical Geography and Quaternary Geology, Stockholm University, Stockholm, Sweden.Google Scholar
Gusmeroli, A., Jansson, P., Petterson, R., Murray, T., 2012. Twenty years of cold surface layer thinning at Storglaciären, sub-Arctic Sweden, 1989–2009. Journal of Glaciology 58: 310.Google Scholar
Haeberli, W., 1973. Die Basis -Temperatur der winterlichen Schneedecke als moglicher indikator fur die Verbreitung von permafrost in den Alpen. Zeitschrift für Gletscherkunde und Glazialgeologie 9: 221227.Google Scholar
Haeberli, W., 1985. Creep of Mountain Permafrost: Internal Structure and Flow of Alpine Rock Glaciers Mitteilungen der Versuchsanstalf fuìr Wasserbau, Hydrologie und Glaziologie. Eidgenoìssischen Technischen Hochschule, Zürich.Google Scholar
Haeberli, W., 2005. Investigating glacier–permafrost relationships in high-mountain areas: historical background, selected examples and research needs. In: Harris, C., Murton, J.B. (Eds.), Cryospheric Systems: Glaciers and Permafrost Geological Society of London Special Publication No. 242. Geological Society of London, London, pp. 2937.Google Scholar
Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O., Kääb, A., Kaufmann, V., et al. 2006. Permafrost creep and rock glaciers dynamics. Permafrost and Periglacial Processes 17: 189214.Google Scholar
Harris, C., Haeberli, W., Vonder Mühll, D., King, L., 2001. Permafrost Monitoring in the High Mountains of Europe: the Pace Project in its Global Context. Permafrost and Periglacial Processes 12: 311.CrossRefGoogle Scholar
Harris, C., Murton, J.B. (Eds.), 2005a. Cryospheric systems: Glaciers and Permafrost Geological Society of London Special Publications No. 242. Geological Society of London, London.Google Scholar
Harris, C., Murton, J.B, 2005b. Interactions between glaciers and permafrost: an introduction. In: Harris, C., Murton, J.B. (Eds). 2005, Cryospheric Systems: Glaciers and Permafrost Geological Society of London Special Publications No. 242. Geological Society of London, London, pp. 19.Google Scholar
Hauck, C., Isaksen, K., Vonder Mühll, D., Sollid, J.L., 2004. Geophysical surveys designed to delineate the altitudinal limit of mountain permafrost: an example from Jotunheimen, Norway. Permafrost and Periglacial Processes 15: 191205.Google Scholar
Hauck, C., Kneisel, C. (Eds.), 2008. Applied Geophysics in Periglacial Environment. Cambridge University Press, Cambridge.Google Scholar
Hilbich, C., Marescot, L., Hauck, C., Loke, M. H., Mausbacher, R., 2009. Applicability of electrical resistivity tomography monitoring to coarse blocky and ice-rich permafrost landforms. Permafrost and Periglacial Processes 20: 269284.Google Scholar
Hoekstra, P., McNeill, D., 1973. Electromagnetic probing of permafrost. In: National Research Council of Canada, U.S. National Academy of Sciences, National Academy of Engineering, National Research Council (Eds.), 2nd International Conference on Permafrost. National Academic of Sciences, Washington, DC, pp. 517–526.Google Scholar
Holmlund, P., Jansson, P., Pettersson, R., 2005. A re-analysis of the 58-year mass balance record of Storglaciären, Sweden. Annals of Glaciology 42: 389394.Google Scholar
Hooke, R., LeB., J., Gould, E., Brzozowski, J., 1983. Near-surface temperatures near and below the equilibrium line on polar and subpolar glaciers. Zeitschrift für Gletschkunde und Glazialgeologie 19: 125.Google Scholar
Hughes, T., 1973. Glacial permafrost and Pleistocene Ice Ages. In: National Research Council of Canada, U.S. National Academy of Sciences, National Academy of Engineering, National Research Council (Eds.), 2nd International Conference on Permafrost. National Academic of Sciences, Washington, DC, pp. 213–223.Google Scholar
Isaksen, K., Holmlund, P., Sollid, J.L., Harris, C., 2001. Three deep alpine-permafrost boreholes in Svalbard and Scandinavia. Permafrost and Periglacial Processes 12: 1325.Google Scholar
Isaksen, K., Hauck, C., Gudevang, E., Ødegård, R.S., Sollid, J.L., 2002. Mountain permafrost distribution in Dovrefjell and Jotunheimen, southern Norway, based on BTS and DC resistivity tomography data. Norsk Geografisk Tidsskrift–Norwegian Journal of Geography 56: 122136.Google Scholar
Jahn, A., 1975. Problems of the Periglacial Zone. Państwowe Wydawnictwo Naukowe, Warszawa, pp. 223.Google Scholar
Jansson, P., 1996. Hydrology and dynamics of a polythermal valley glacier. Geografiska Annaler 78A: 171180.Google Scholar
Jansson, P., Nälsund, J.-O., Petterson, R., Richardson-Nälsund, C., Holmlund, P., 2000. Debris entrainment and polythermal structure in the terminus of Storglaciären. Debris-Covered Glaciers. In: Fountain, A., Masayoshi, N., Raymond, C.F., Debris-covered Glaciers: Proceedings of a Workshop Held at Seattle, Washington, USA, September 2000. International Association of Hydrological Science, Publication No. 264. IAHS Press, Oxfordshire, pp. 143–151.Google Scholar
Jonsell, U., Hock, R., Duguay, M., 2013. Recent air and ground temperature increases at Tarfala Research Station, Sweden. Polar Research 32: 111.Google Scholar
King, L., 1984. Permafrost in Skandinavien Untersuchungsergebnisse aus Lappland, Jotunheimen, und Dovre/Rondane Heidelberger geographische Arbeiten, No. 76. University of Heidelberg, Heidelberg, pp. 125.Google Scholar
King, L., 1986. Zonation and ecology of high mountain permafrost in Scandinavia. Geografiska Annaler: Series A, Physical Geography 68: 131139.Google Scholar
Kneisel, C., 1999. Permafrost in Gletschervorfeldern: eine vergleichende Untersuchung in den Ostschweizer Alpen und Nordschweden. Trierer Geographische Studien, No. 22. Geographische Ges. Trier.Google Scholar
Kneisel, C., 2003. Permafrost in recently deglaciated glacier forefields: measurements and observations in the eastern Swiss Alps and northern Sweden. Zeitschrift für Geomorphologie, NF 47: 289305.Google Scholar
Kneisel, C., Hauck, C., Fortier, R., Moorman, B., 2008. Advances in geophysical methods for permafrost investigations. Permafrost and Periglacial Processes 19: 157178.Google Scholar
Knight, P. G., 1989. Stacking of basal debris by layers without bulk freeze-on: isotopic evidence from West Greenland. Journal of Glaciology 35: 214216.Google Scholar
Knight, P.G., 1997. The basal ice layer of glaciers and ice sheets. Quaternary science Reviews 16: 975993.Google Scholar
Knight, P.G., 2011. Glaciology. In: Singh, V.P., Singh, P., Haritashya, U.K. (Eds.), Encyclopedia of Snow, Ice and Glaciers. Springer, Dordrecht, The Netherlands, p. 440.Google Scholar
Kotlyakov, W.M. (Ed.), 1984. Glaciologitsheskiy Slovar (Glaciological Dictionary). Gidrometeoizdat, Leningrad.Google Scholar
Krass, M. S., 1991. Formation of the thermal regime of subpolar glaciers under climate change. In: Kotlyakov, V.M., Ushakov, A., Glazovsky, A. (Eds.), Glariers-Ocean-Atmosphere Interactions. International Association of Hydrological Science, Publication No. 208. IAHS Press, Oxfordshire, pp. 515525.Google Scholar
Lilleøren, K.S., Humlum, O., Nesje, A., Etzelmüller, B., 2013. Holocene development and geomorphic processes at Omnsbreen, southern Norway: evidence for glacier-permafrost interactions. The Holocene 23: 796809.Google Scholar
Loke, M.H., 2014. Tutorial: 2-D and 3-D electrical imaging surveys (accessed March 30, 2015). http://www.geotomosoft.com.Google Scholar
Loke, M. H., Acworth, I., Dahlin, T., 2003. A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Exploration Geophysics 34: 182187.Google Scholar
Marescot, L., Loke, M. H., Chapellier, D., Delaloye, R., Lambiel, C., Reynard, E., 2003. Assessing reliability of 2D resistivity imaging in permafrost and rock glacier studies using the depth of investigation index method. Near Surface Geophysics 1: 5767.Google Scholar
Marklund, P., 2011. Alpin permafrost I Kebnekaisefjällen: Modellering med logistic regression och BTS-data. Självständigt arbete i geovetenskap, No. 22, Uppsala University, Uppsala, Sweden.Google Scholar
Martini, I.P., Brookfield, M.E., Sadura, S., 2001. Principles of Glacial Geomorphology and Geology. Prentice Hall, Upper Saddle River, New Jersey.Google Scholar
Moorman, B.J., Robinson, S.D., Burgess, M.M., 2003. Imaging periglacial conditions with ground-penetrating radar. Permafrost and Periglacial Processes 14: 319329.Google Scholar
Muller, S.W., 1943. Permafrost or Permanently Frozen Ground and Related Engineering Problems. U.S. Engineers Office, Strategic Engineering Study, Special Report No. 62, Ann Arbor, Michigan, Edwards Bros.Google Scholar
Neal, A., 2004. Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth Science Reviews 66: 261330.Google Scholar
Olayinka, A.I., Yaramanci, U., 2000. Use of block inversion in the 2-D interpretation of apparent resistivity data and its comparison with smooth inversion. Journal of Applied Geophysics 45: 6381.Google Scholar
Østrem, G., 1964. Ice-cored moraines in Scandinavia. Geografiska Annaler 46(3), 282337.Google Scholar
Paterson, W.S.B., 2002. The Physics of Glaciers. 3rd ed. Butterworth-Heineman, Oxford.Google Scholar
Pettersson, R., 2004. Dynamics of the cold surface layer of polythermal Storglaciären, PhD dissertation, Stockholm University, Stockholm, Sweden.Google Scholar
Pettersson, R., Jansson, P., Blatter, H., 2004. Spatial variability in water content at the cold-temperate transition surface of the polythermal Storglaciären, Sweden. Journal of Geophysical Research 109: F02009. http://dx.doi.org/10.1029/2003JF000110.Google Scholar
Pettersson, R., Jansson, P., Holmlund, P., 2003. Cold surface layer thinning on Storglaciären, Sweden, observed by repeated ground penetrating radar surveys. Journal of Geophysical Research 108(F1), 6004. http://dx.doi.org/10.1029/2003JF000024.Google Scholar
Pettersson, R., Jansson, P., Huwald, H., Blatter, H., 2007. Spatial pattern and stability of the cold surface layer of Storglaciären, Sweden. Journal of Glaciology 53: 99109.Google Scholar
Piotrowski, J.A., Mickelson, D.M., Tulaczyk, S., Krzyszkowski, D., Junge, F.W., 2001. Were deforming beds beneath past ice sheets really widespread? Quaternary International 86: 139150.Google Scholar
Plewes, L.A., Hubbard, B., 2001. A review of the use of radio-echo sounding in glaciology. Progress in Physical Geography 25: 203236.Google Scholar
Rabus, B.T., Echelmeyer, K.A., 1998. The mass balance of McCall Glacier, Brooks Range, Alaska, U.S.A.: its regional relevance and implications for climate change in the Arctic. Journal of Glaciology 44: 333351.Google Scholar
Reynolds, J. M., 1997. An Introduction to Applied and Environmental Geophysics. John Wiley and Sons, Hoboken.Google Scholar
Seppi, R., Zanoner, T., Carton, A., Bondesan, A., Francese, R., Carturan, L., Zumiani, M., Giorgi, M., Nifo, A., 2015. Current transition from glacial to periglacial processes in the Dolomites (South-Eastern Alps). Geomorphology 228: 7186.Google Scholar
Schneider, T., Jansson, P., 2004. Internal accumulation in firn and its significance for the mass balance of Storglaciaren, Sweden. Journal of Glaciology 50: 2534.Google Scholar
Shumskii, P.A., 1964. Principles of Structural Glaciology: The Petrography of Fresh-water Ice as a Method of Glaciological Investigation (translated by D. Kraus). Dover, New York.Google Scholar
Trabant, D.C., Mayo, L.R., 1985. Estimation and effects of internal accumulation on five glaciers in Alaska. Annals of Glaciology 6: 113117.Google Scholar
van der Meer, J.J.M., Menzies, J., Rose, J., 2003. Subglacial till: the deforming glacier bed. Quaternary Science Reviews 22: 16591685.Google Scholar
Waller, R.I., Tuckwell, G.W., 2005. Glacier-permafrost interactions and glacitectonic landform generation at the margin of the Leverett Glaxcier, West Greenland. In: Harris, C., Murton, J.B. (Eds.), Cryospheric Systems: Glaciers and Permafrost Geological Society of London Special Publication No. 242. Geological Society of London, London, pp. 3950.Google Scholar
Waller, R.I., 2001. The influence of basal processes on the dynamic behaviouir of cold-based glaciers. Quarternary International 86: 117128.Google Scholar
Waller, R.I., Murton, J.B., Kristensen, L., 2012. Glacier – permafrost interactions: Processes, products and glaciological implications. Sedimentary Geology 255–256: 128.Google Scholar
Washburn, A.L., 1973. Periglacial Processes and Environments. Edward Arnold, London.Google Scholar
Yanhui, Y., Qihao, Y., Xicai, P., Xinbin, W., Lei, G., 2013. Application of electrical resistivity tomography in investigating depth of permafrost base and permafrost structure in Tibetan Plateau. Cold Regions Science and Technology 87: 1926.Google Scholar
Zhou, B., Dahlin, T., 2003. Properties and effects of measurement errors on 2d resistivity imaging surveying. Near Surface Geophysics 1: 105117.Google Scholar