Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-12T22:27:54.219Z Has data issue: false hasContentIssue false

Reflection of Scandinavian Ice Sheet Fluctuations in Norwegian Sea Sediments during the Past 150,000 Years

Published online by Cambridge University Press:  20 January 2017

Karl-Heinz Baumann
Affiliation:
GEOMAR Research Center for Marine Geosciences, Wischhofstrasse 1-3, D-24148 Kiel, Germany Department of Geology, University of Bergen, Allégt. 41, N-5007 Bergen, Norway
Klas S. Lackschewitz
Affiliation:
GEOMAR Research Center for Marine Geosciences, Wischhofstrasse 1-3, D-24148 Kiel, Germany
Jan Mangerud
Affiliation:
Fachbereich Geowissenschaften, University of Bremen, Postfach 330 440, D-28334 Bremen, Germany
Robert F. Spielhagen
Affiliation:
GEOMAR Research Center for Marine Geosciences, Wischhofstrasse 1-3, D-24148 Kiel, Germany
Thomas C.W. Wolf-welling
Affiliation:
GEOMAR Research Center for Marine Geosciences, Wischhofstrasse 1-3, D-24148 Kiel, Germany
Rüdiger Henrich
Affiliation:
Department of Geology, University of Bergen, Allégt. 41, N-5007 Bergen, Norway
Heidemarie Kassens
Affiliation:
GEOMAR Research Center for Marine Geosciences, Wischhofstrasse 1-3, D-24148 Kiel, Germany

Abstract

The record of glacier fluctuations in western Scandinavia, as reconstructed from continental data, has been correlated with records of ice-rafted detritus (IRD) from well-dated sediment cores from the Norwegian Sea covering the past 150,000 yr B.P. The input of IRD into the ocean is used as a proxy for ice sheet advances onto the shelf and, thus, for the calibration of a glaciation curve. The marine results generally support land-based reconstructions of glacier fluctuations and improve the time-control on glacial advances. The Saalian ice sheet decayed very rapidly approximately 125,000 yr B.P. In the Early Weichselian, a minor but significant IRD maximum indicates the presence of icebergs in isotope substage 5b (especially between 95,000 and 83,000 yr B.P.). Reduced amounts of calcareous nannofossils indicate that surface waters were influenced by meltwater discharges during isotope substages 5d and 5b. An extensive build-up of inland ice began again during isotope stage 4, but maximum glaciation was reached only in early stage 3 (58,000-53,000 yr B.P.). Marine sediments have minimum carbonate content, indicating strong dilution by lithogenic ice-rafted material. Generally, the IRD accumulation rate was considerably higher in stages 4-2 than in stage 5. A marked peak in IRD accumulation rates from 47,000 to 43,000 yr B.P. correlates well with a second Middle Weichselian ice sheet advance dated by the Laschamp/Olby paleomagnetic event. Minimum ice extent during the Ålesund interstade (38,500-32,500 yr B.P.) and several glacial oscillations during the Late Weichselian are also seen in the IRD record. Of several late Weichselian glacial oscillations on the shelf, at least four correspond to the North Atlantic Heinrich events. Ice sheet behavior was either coupled or linked by external forcing during these events, whereas internal ice sheet mechanisms may account for the noncoherent fluctuations.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, B. G. Sejrup, H. P., and Kirkhus, L. (1983). Eemian and Weichselian deposits at B0 on Karm0y, SW Norway. A preliminary report. Norges Geologiske Underspkelse 380, 189201.Google Scholar
Andersen, B. G. Bakken, K. Dale, B. Fugelli, E. Henningsmoen, K. E. H0eg, H. I. Nagy, J. Read, A., and Tellemann, H. (1991). Weichselian Stratigraphy at Oppstad, H0gemork and Foss Eigeland, Jsren, SW Norway. Striae 34, 109124.Google Scholar
Andrews, J. T. Erlenkeuser, H. Tedesco, K. Aksu, A. E., and Jull, A. I. T. (1994). Late Quaternary (Stage 2 and 3) meltwater and Heinrich Events, Northwest Labrador Sea. Quaternary Research 41, 2634.Google Scholar
Barbetti, M. (1980). Geomagnetic strength over the last 50,000 years and changes in atmospheric 14C concentration: Emerging Trends. Radiocarbon 22, 192199.CrossRefGoogle Scholar
Bard, E. Arnold, M. Fairbanks, R. G., and Hamelin, B. (1993). 230Th-234U and 14C ages obtained by mass spectrometry on corals. Radiocarbon 35, 191199.Google Scholar
Bauch, H. (1993). Planktische Foraminiferen im Europaischen Nordmeer—ihre Bedeutung fiir die palao-ozeanographische Interpretation wahrend der letzten 600,000 Jahre. Berichte Sonderforschungsbereich 313 40, 108.Google Scholar
Baumann, K.-H. (1990). Veranderlichkeit der Coccolithophoridenflora des Europaischen Nordmeeres im Jungquartar. Berichte Sonderforschungsbereich 313 22, 146.Google Scholar
Baumann, K.-H. Lackschewitz, K. S. Erlenkeuser, H. Henrich, R., and Jlinger, B. (1993). Late Quaternary calcium carbonate sedimentation and terrigenous input along the East Greenland continental margin. Marine Geology 14, 1336.Google Scholar
Behre, K.-E. (1989). Biostratigraphy of the last glacial period in Europe. Quaternary Science Reviews 8, 2544.Google Scholar
Behre, K.-E., and Plicht, J. van der, (1992). Towards an absolute chronology for the last glacial period in Europe: Radiocarbon dates from Oerel, northern Germany. Vegetation History Archaeobotany 1, 111117.Google Scholar
Bergersen, O. F. (1991). Norske mammutfunn-og kvartaergeologi. Naturen 6, 254262.Google Scholar
Bergersen, O. F. Thoresen, M., and Hougsnaes, R. (1991). Evidence for a newly discovered Weichselian Interstadial in Gudbrandsdalen, Central South Norway. Striae 34, 103108.Google Scholar
Bischof, J. (1990). Dropstones in the Norwegian-Greenland Sea— Indications of a late Quaternary circulation pattern? In “Geologic History of the Polar Oceans: Arctic versus Antartic” (Bleil, U. and Thiede, J., Eds.), NATO ASI Series C (308), pp. 499518. Kluwer Academic, Dordrecht.Google Scholar
Bischof, J. (1994). The decay of the Barents ice sheet as documented in nordic seas ice-rafted debris. Marine Geology 117, 3555.Google Scholar
Bond, G. Heinrich, H. Broecker, W. Labeyrie, L. McManus, J. Andrews, J. Huon, S. Jantschik, R. Clasen, S. Simet, C. Tedesco, K. Klas, M. Bonani, G., and Ivy, S. (1992). Evidence for massive discharges of ivebergs into the North Atlantic ocean during the last glacial period. Nature 360, 245249.Google Scholar
Broecker, W. S. Bond, G. McManus, J. Klas, M., and Clark, E. (1992). Origin of the Northern Atlantic’s Heinrich Events. Climatic Dynamics 6, 265273.Google Scholar
Carstens, J., and Wefer, G. (1992). Recent distribution of planktonic foraminifera in the Nansen Basin, Arctic Ocean. Deep-Sea Research 39(S2A), S507S524.CrossRefGoogle Scholar
Drozdowski, E., and Fedorowicz, S. (1987). Stratigraphy of Vistulian glaciogenic deposits and corresponding thermoluminescence dates in the lower Vistula region, northern Poland. Boreas 16, 139153.CrossRefGoogle Scholar
Ehrmann, W., and Thiede, J. (1985). History of Mesozoic and Cenozoic sediment fluxes to the North Atlantic Ocean. Contribution to Sedimentology 15, 109.Google Scholar
Fronval, T. Jansen, E. Bloemendal, J., and Johnson, S. Stadialinterstadial cycles in the Norwegian Sea: Evidence for coherent changes in European and North American ice sheet on millennium timescales. Nature, submitted for publication.Google Scholar
Gard, G. (1988). Late Quaternary calcareous nannofossil biochronology and paleo-oceanography of Artie and Subartic Seas. Meddelanden Stockholms Universitets Geologiska Institution 275, 145.Google Scholar
Grousset, F. E. Labeyrie, L. Sinko, J. A.. Cremer, M. Bond, G. Duprat, J. Cortijo, E., and Huon, S. (1993). Patterns of ice-rafted detritus in the glacial North Atlantic (40-55°N). Paleoceanography 8, 175192.Google Scholar
Griiger, E. (1991). Late Quaternary biostratigraphy in Northern Germany 150,000-15,000 years B.P. Striae 34, 714.Google Scholar
Hebbeln, D., and Wefer, G. (1991). Effects of ice coverage and icerafted material on sedimentation in the Fram Strait. Nature 350, 409411.Google Scholar
Hebbeln, D. Dokken, T. Andersen, E. S. Hald, M., and Elverh0i, A. (1994). Moisture supply for northern ice-sheet growth during the Last Glacial Maximum. Nature 370, 357360.CrossRefGoogle Scholar
Heinrich, H. (1988). Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quaternary Research 29, 143152.Google Scholar
Henrich, R. Kassens, H. Vogelsang, E., and Thiede, J. (1989). Sedimentary fades of glacial-interglacial cycles in the Norwegian Sea during the last 350 ka. Marine Geology 86, 283319.Google Scholar
Hopkins, T. S. (1988). The GIN Sea. Review of physical oceanography and literature from 1972 Saclantcen Report, SR-124. Saclant Undersea Research Centre, San Bartolomeo, Italy.Google Scholar
Houmark-Nielsen, M. (1989). The last interglacial-glacial cycle in Denmark. Quaternary International 3(4), 3139.CrossRefGoogle Scholar
Jones, G. A., and Keigwin, L. D. (1988). Evidence from the Fram Strait (78°N) for early deglaciation. Nature 336, 5659.Google Scholar
Kassens, H. (1990). Verfestigte Sedimentlagen und seismische Reflektoren: Fruhdiagenese und Palao-Ozeanographie in der Norwegischen See. Berichte Sonderforschungsbereich 313 24, 117.Google Scholar
Kellogg, T. B. (1976). PaleocJimatology and paleoceanography of the Norwegian and Greenland Seas: The last 450,000 years. Marine Micropaleontology 2, 235249.Google Scholar
Kellogg, T. B. Duplessy, J.-C., and Shackelton, N. J. (1978). Planktonic foraminiferal and oxygen isotopic stratigraphy and paleoclimatology of Norwegian Sea. Boreas 7, 6173.Google Scholar
Labeyrie, L. D., and Duplessy, J.-C. (1985). Changes in the oceanic °C/12C ratio during the last 140,000 years: High-latitude surface water records. Palaeogeography, Palaeoclimatology, Palaeoecology 50, 217240.Google Scholar
Lagerback, R., and Robertsson, A. M. (1988). Kettle holes — Stratigraphical archives for Weichselian geology and palaeoenvironment in northernmost Sweden. Boreas 17, 439468.CrossRefGoogle Scholar
Larsen, E., and Sejrup, H. P. (1990). Weichselian land-sea interactions: western Norway-Norwegian Sea. Quaternary Science Review 9, 8597.CrossRefGoogle Scholar
Larsen, E. Gulliksen, S. Lauritzen, S.-E. Lie, R. L0vlie, R., and Mangerud, J. (1987). Cave stratigraphy in western Norway: Multiple Weichselian glaciations and interstadiel vertebrate fauna. Boreas 16, 267292.Google Scholar
Lauritzen, S.-E. (1991). Uranium Series Dating of Speleothems: A Glacial Chronology for Nordland, Norway, for the Last 600 ka. Striae 34, 127133.Google Scholar
Levi, S. Audunsson, H. Duncan, R. A. Kristjansson, L. Gillot, P.-Y., and Jakobsson, S. P. (1990). Late Pleistocene geomagnetic excursion in Icelandic lavas: Confirmation of the Laschamp excursion. Earth and Planetary Science Letters 96, 443457.Google Scholar
Liddicoat, J. C. (1992). Mono Lake Excursion in Mono Basin, California, and at Carson Sink and Pyramid Lake, Nevada. Geophysical Journal International 166, 442452.Google Scholar
L0vlie, R. (1989). Palaeomagnetic excursions during the last interglacial/glacial cycle: A synthesis. Quaternary International 3(4), 511.CrossRefGoogle Scholar
L0vlie, R., and Sandnes, A. (1987). Palaeomagnetic excursions recorded in mid-Weichselian cave sediments from SkjonghelJeren, Valder0y, W. Norway. Physics of the Earth and Planetary Interiors 45, 337348.Google Scholar
Lundqvist, J., and Miller, U. (1992). Weichselian stratigraphy and glaciations in the T a; sj0-Holing area, central Sweden. Sveriges Geologiska Undersokning C 826, 435.Google Scholar
Mackiewicz, N. E. Powell, R, D. Carlson, P. R», and Molnia, B, F. (1984), Interlaminated ice-proximal glacimarine sediments in Muir Inlet, Alaska. Marine Geology 57, 113147.Google Scholar
Mangerud, J. (1980). Ice-front variations of different parts of the Scandinavian Ice Sheet, 13,000-10,000 Years B.P. In “The Lateglacial of North-West Europe” (Lowe, J. J. Gray, J. M., and Robinson, J. E., Eds.), pp. 2330. Pergamon, New York.Google Scholar
Mangerud, J. (1989). Correlation of the Eemian and the Weichselian with deep sea oxygen isotope stratigraphy. Quaternary International 3/4, 14.Google Scholar
Mangerud, J. (1991a). The Scandinavian Ice Sheet through the last interglaciaL/glacia) cycle. In “Klimageschichtliche Probleme der letzten 130,000 Jahre” (Frenzel, B., Ed.), pp. 307330, G. Fisher, Stuttgart, New York. (This paper was presented as a lecture in 1987, accepted for press March 1988 and widely distributed. U is therefore in the literature cited with different dates 1987-1991).Google Scholar
Mangerud, J. (1991b). The last interglacial/glacial cycle in northern Europe. In “Quaternary Landscapes” (Shane, L. and Cushing, E., Eds.), pp, 3875. Univ. Minnesota Press, Minneapolis.Google Scholar
Mangerud, J. Gulliksen, S. Larsen, E. Longva, O. Miller, G. H. Sejrup, H. P., and S0nstegaard, E. (1981). A Middle Weichselian ice-free period in western Norway: The Alesund interstadial. Boreas 10, 447462.Google Scholar
Martinsson, D. G. Nicklas, G. P. Hays, J. D. Imbrie, J. Moore, T. C., and Shackleton, N. J. (1987). Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000 years chronostratigraphy. Quaternary Research 27(1), 129.Google Scholar
Mejdahl, V. Shlukov, A. L Shakhovets, S. A. Voskovskaya, L. T., and Lyashenko, H. G. (1992). The effect of shallow traps: a possible source of error in TL dating of sediments. Ancient TL 10, 2225.Google Scholar
Miller, G. H., and Mangerud, J. (1986). Aminostratigraphy of European marine interglacial deposits. Quaternary Science Review 4, 215278.CrossRefGoogle Scholar
Miller, G. H. Sejrup, H. P. Mangerud, J., and Andersen, B. G. (1983). Amino acid ratios in Quaternary molluscs and foraminifera from western Norway: Correlation, geochronology and plaeotemperature estimates. Boreas 12, 107124.CrossRefGoogle Scholar
Mojski, J. E. (1992). Vistulian stratigraphy and TL dates in Poland. Sveriges Geologiska Undersokning C826, 195200.Google Scholar
Nowaczyk, N. R. Frederichs, T. W. Eisenhauer, A., and Gard, G. (1993). Stratigraphy of late Quaternary Sediments from the Yermak Plateau, Arctic Ocean: Evidence for four Geomagnetic Polarity Events within the last 170 kys of the Brunhes Chron. Geophysical Journal International 46,Google Scholar
Niirnberg, D. Wollenburg, I. Dethleff, D. Eiken, H. Kassens, H. Letzig, T. Reimnitz, E., and Thiede, J. (1994). Sediments in Artie sea-ice: Implications for entrainment, transport and release. Marine Geology 119, 185214.Google Scholar
Petersen, K. S. (1985). The Late Quaternary history of Denmark. Journal of Dansk Archeology 4, 722.Google Scholar
Petersen, K. S., and Kronborg, C. (1991). Late Pleistocene history of the inland glaciation in Denmark. In “Klimageschichtliche Probleme der letzten 130000 Jahre” (Frenzel, B., Ed.), pp. 331342. G. Fisher, Stuttgart, New York.Google Scholar
Pfirman, S. Wollenburg, I. Thiede, J., and Lange, M. A. (1989). Lithogenic sediment on Arctic pack ice: Potential aelian flux and contribution to deep sea sediments. In “Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport” (Leinen, M. and Samthein, M., Eds.), Nato ASI Series C 282, pp. 463493.Google Scholar
Powell, R. D. (1984). Glacimarine processes and inductive lithofacies modelling of ice shelf and tidewater glacier sediments based on Quaternary examples. Marine Geology 57, 152.Google Scholar
Ramm, M. (1988). A stratigraphic study of Late Quaternary sediments on the V0ring Plateau, eastern Norwegian Sea. Marine Geology 83, 159191.Google Scholar
Samtleben, C., and Schroder, A. (1992). Living coccolithophore communities in the Norwegian-Greenland Sea and their record in sediments. Marine Micropaleontology 19, 333354.Google Scholar
Samthein, M. Jansen, E. Arnold, M. Duplessy, Erlenkeuser, H. Flatoy, A. Veum, T. Vogelsang, E., and Weinelt, M. S, (1992). 8’80 time-slice reconstruction of meltwater anomalies at Termination I in the North Atlantic between 50 and 80°N. In “The Last Deglaciation: Absolute and Radiocarbon Chronologies” (Bard, E. and Broecker, W. S., Eds.), NATO AS! Series I, Global Environmental Change, Vol. 2, pp. 1344. Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
Scholten, J. C. Botz, R. Mangini, A. Paetsch, H. Stoffers, P., and Vogelsang, E. (1990), High resolution 230Thex stratigraphy of sediments from high-Iatitude areas (Norwegian Sea, Fram Strait). Earth and Planetary Science Letters 101, 5462.Google Scholar
Sejrup, H. P. (1987). Molluscan and foraminiferal biostratigraphy of an Eemian-Early Weichselian section on Karm0y, southwestern Norway. Boreas 16, 2742.Google Scholar
Sejrup, H. P. Haflidason, H. Aarseth, I. King, E. Forsberg, C. F. Long, D., and Rokoengen, K. (1994). Late Weichselian glaciation history of the northern North Sea. Boreas 23, 113.Google Scholar
Shackleton, N.J. Imbrie, J., and Hall, M. A. (1983). Oxygen and carbon isotope record of the East Pacific core V19-30: Implications for the Formation of deep water in the late Pleistocene North Atlantic. Earth Planetary Science Letters 65, 233244.CrossRefGoogle Scholar
Spielhagen, R. F. (1991). Die Eisdrift in der Framstrafle wahrend der letzten 200,000 Jahre. GEOMAR Report 4, 133.Google Scholar
Vogelsang, E. (1990). Palao-Ozeanographie des Europaischen Nordmeeres an Hand stabiler Kohlenstoffund Sauerstoffisotope. Berichte Sonderforschungsbereich 313 23, 136.Google Scholar
Vorren, T. O. Vorren, K.-D. Aim, T. Gulliksen, S., and L0vlie, R. (1988). The last deglaciation (20,000 to U,GQ0 B.P.) on And0ya, northern Norway. Boreas 17, 4177.Google Scholar
Weinelt, M. S. Sarnthein, M. Vogelsang, E., and Erlenkeuser, H. (1991). Early decay of the Barents Shelf Ice Sheet—Spread of stable isotope signals across the eastern Norwegian Sea. Norsk Geologisk Tidsskriftn, 137140.Google Scholar
Weinelt, M. S. (1993). Veranderungen der Oberflachenzirkulation im Europaischen Nordmeer wahrend der letzten 60.000 Jahre— Hinweise aus stabilen Isotopen. Berichte Sonderforschungsbereich 313 41, 106.Google Scholar
Wolf, T. C. W. (1991). Palao-ozeanographisch-klimatische Entwicklung des nordlichen Nordatlantiks seit dem spaten Neogen (ODP Legs 105 und 104, DSDP Leg 81). GEOMAR Report 5, 92.Google Scholar