Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-13T16:33:46.701Z Has data issue: false hasContentIssue false

Quaternary ironstones in the Xingu River, eastern Amazonia (Brazil)

Published online by Cambridge University Press:  05 May 2022

Marília Prado Freire*
Institute of Geosciences, University of São Paulo, 05508-040, São Paulo, Brazil
Ana Maria Góes
Institute of Geosciences, University of São Paulo, 05508-040, São Paulo, Brazil
Thomas Rich Fairchild
Institute of Geosciences, University of São Paulo, 05508-040, São Paulo, Brazil
Cécile Gautheron
University of Paris-Saclay, CNRS, GEOPS, 91405, Orsay, France.
Mauricio Parra
Institute of Geosciences, University of São Paulo, 05508-040, São Paulo, Brazil
Fabiano Nascimento Pupim
Institute of Geosciences, University of São Paulo, 05508-040, São Paulo, Brazil Federal University of São Paulo, ICAQF, 09913-030, Diadema, Brazil
Dailson José Bertassoli Junior
Institute of Geosciences, University of São Paulo, 05508-040, São Paulo, Brazil University of São Paulo, EACH, 03828-000, São Paulo, Brazil
Leandro Melo de Sousa
Federal University of Pará, LIA, 68372-040, Altamira, Brazil
Gelvam André Hartmann
Institute of Geosciences, University of Campinas, 13083-855, Campinas, Brazil
Rosella Pinna-Jamme
University of Paris-Saclay, CNRS, GEOPS, 91405, Orsay, France.
André Oliveira Sawakuchi
Institute of Geosciences, University of São Paulo, 05508-040, São Paulo, Brazil
*Corresponding author email address:


Using a multimethod approach, including polarized light microscopy (PLM), scanning electron microscopy (SEM) with X-ray energy dispersive spectroscopy (EDS), SEM with mineral liberation analyzer (MLA), X-ray diffraction (XRD), and Raman spectroscopy, we examined sub-recent ferruginous crusts in the Xingu River in the Amazon Basin that have formed since the Early Pleistocene (<1.2 Ma), as indicated by (U-Th)/He dating of goethite. Although now preserved as goethite, the size and form of the smallest components of the ironstone (nanorods) and the nature of isomorphic substitution in the goethite point to very early transformation of the original precipitate, an unstable hydrous ferrous oxide (HFO) mineral, into goethite. The fine, multiply undulating laminae of the ironstone contain abundant filamentous microbial molds and casts that together support identification of the crusts as ferruginous microbialites and suggest a role of bioinduction/bioinfluence in ironstone precipitation, although inorganic precipitation is also evident. The Xingu Quaternary ironstones are the first evidence of ferruginous microbialite in a modern freshwater system in South America and may hold clues to the recent history of the Xingu River.

Research Article
Copyright © University of Washington. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Almaraz, N., Whitaker, A.H, Andrews, M.Y, Duckworth, O.W., 2017. Assessing biomineral formation by Iron-oxidizing bacteria in a Circumneutral Creek. Journal of Contemporary Water Research & Education Issue 160, 6071.CrossRefGoogle Scholar
ANA, 2020. Hidroweb: Sistema de Informações Hidrológicas. (accessed October 2020).Google Scholar
Archer, A.W., 2005. Review of Amazonian depositional systems. In: Blum, M.D., Marriott, S.B., Leclair, S.F. (Eds.), Fluvial Sedimentology VII: International Association of Sedimentologists, Special Publication 35, 1739.CrossRefGoogle Scholar
Armstrong, H.A., Brasier, M.D., 2005. Microfossils. Blackwell Publishing, Oxford.Google Scholar
Ault, A.K., Gautheron, C., King, G.E., 2019. Innovations in (U-Th)/He, fission-track, and trapped-charge thermochronometry with applications to earthquakes, weathering, surface-mantle connections, and the growth and decay of mountains. Tectonics, 38, 37053739.CrossRefGoogle Scholar
Bahia, R.B.C., Faraco, M.T.L., Monteiro, M.A.S., Oliveira, M.A.O., 2004. Folha SA.22-Belém. In: Schobbenhaus, C., Gonçalves, J.H., Santos, J.O.S., Abram, M.B., Leão Neto, R., Matos, G.M.M., Vidotti, R.M., Ramos, M.A.B., Jesus, J.D.A. (Eds.), Carta Geológica do Brasil ao Milionésimo. Sistema de Informações Geográficas. Programa Geologia do Brasil. CPRM, Brasilia.Google Scholar
Bertassoli, D.J. Jr., Sawakuchi, A.O., Sawakuchi, H.O., Pupim, F.N., Hartmann, G.A., McGlue, M.M., Chiessi, et al. , 2017. The fate of carbon in sediments of the Xingu and Tapajós clearwater rivers, Eastern Amazon. Frontiers in Marine Science 4, 44. Scholar
Camargo, M., Giarrizzo, T., Isaac, V., 2004. Review of the geographic distribution of fish fauna in the Xingu River Basin, Brazil. Ecotropica 10, 123147.Google Scholar
Carlson, L., 1995. Aluminum substitution in goethite in lake ore. Bulletin of the Geological Society of Finland 67, 1928.CrossRefGoogle Scholar
Chamon, C.C., Sousa, L.M., 2016. A new species of the Leopard Pleco Genus Pseudacanthicus (Siluriformes: Loricariidae) from the Rio Xingu, Brazil. Journal of Fish Biology 90, 356369.CrossRefGoogle ScholarPubMed
Chan, C.S., Fakra, S.C., Edwards, D.C., Emerson, D., Banfield, J.F., 2009. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides. Geochimica et Cosmochimica Acta 73, 38073818.CrossRefGoogle Scholar
Cornell, R.M., Schwertmann, U., 2003. The Iron Oxides: Structure, Properties, Reactions, Occurrence, and Uses. Wiley-VCH, Weinheim, Germany.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A., Zussman, J., 2013. An Introduction to the Rock-Forming Minerals. 3rd ed. Harlow, Essex, England; New York, Longman Scientific & Technical.CrossRefGoogle Scholar
Emerson, D., Fleming, E.J., McBeth, J.M., 2010. Iron-oxidizing bacteria: an environmental and genomic perspective. Annual Review of Microbiology 64, 561583.CrossRefGoogle ScholarPubMed
Emerson, D., Weiss, J.V., 2004. Bacterial iron oxidation in circumneutral freshwater habitats: findings from the field and the laboratory. Geomicrobiology Journal, 21:405414.CrossRefGoogle Scholar
Farley, K.A., 2002. (U-Th)/He dating: techniques, calibrations, and applications. Reviews in Mineralogy and Geochemistry 47, 819844.CrossRefGoogle Scholar
Fitzgerald, D.B., Sabaj Perez, M.H., Sousa, L.M., Gonçalves, A.P., Rapp Py-Daniel, L., Lujan, N.K., Zuanon, J., Winemiller, K.O., Lundberg, J.G., 2018. Diversity and community structure of rapids-dwelling fishes of the Xingu River: implications for conservation amid large-scale hydroelectric development. Biological Conservation 222, 104112.CrossRefGoogle Scholar
Fitzgerald, D.B., Winemiller, K.O., Sabaj Pérez, M.H., Sousa, L.M., 2017. Seasonal changes in the assembly mechanisms structuring tropical fish communities. Ecology 98, 2131.CrossRefGoogle ScholarPubMed
Fricke, A.T., Nittrouer, C.A., Ogston, A.S., Nowacki, D.J., Asp, N.E., Souza Filho, P.W.M., da Silva, M.S., Jalowska, A.M., 2017. River tributaries as sediment sinks: processes operating where the Tapajós and Xingu rivers meet the Amazon tidal river. Sedimentology 64, 17311753.CrossRefGoogle Scholar
Fysh, S.A., Clark, P.E., 1982. Aluminous goethite: a Mössbauer study. Physics and Chemistry of Minerals 8, 180187.CrossRefGoogle Scholar
Gallardo, V.A., Espinoza, C., Fonseca, A., Musleh, S., 2014. Las grandes bacterias del Sulfureto de Humboldt. Gayana 77, 136170.Google Scholar
Garreaud, R.D., Vuille, M., Compagnucci, R., Marengo, J., 2009. Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology 281, 180195.CrossRefGoogle Scholar
Gautheron, C., Pinna-Jamme, R., Derycke, A., Ahadi, F., Sanchez, C., Haurine, F., Monvoisin, G., et al. , 2021. Technical note: analytical protocols and performance for apatite and zircon (U-Th) = He analysis on quadrupole and magnetic sector mass spectrometer systems between 2007 and 2020. Geochronology 3, 351370.CrossRefGoogle Scholar
Goulding, M., Barthem, R., Ferreira, E.J.G., 2003. The Smithsonian Atlas of the Amazon. Smithsonian Books, Washington, DC.Google Scholar
Grey, K., Awramik, S.M., 2020. Handbook for the study and description of microbialites: Geological Survey of Western Australia Bulletin 147, 1278.Google Scholar
Hofmann, F., Reichen, B., Farley, K.A., 2017. Evidence for >5Ma paleo-exposure of an Eocene–Miocene paleosol of the Bohnerz Formation, Switzerland. Earth and Planetary Science Letters 465, 168175.CrossRefGoogle Scholar
Horbe, A.M.C., Costa, M.L., 2005. Lateritic crusts and related soils in eastern Brazilian Amazonia. Geoderma 126, 225239.CrossRefGoogle Scholar
Johnson, K.W., Carmichael, M.J., McDonald, W., Rose, N., Pitchford, J., Windelspecht, M., Karatan, E., Brauer, S.L., 2012. Increased abundance of Gallionella spp., Leptothrix spp. and total bacteria in response to enhanced Mn and Fe concentrations in a disturbed Southern Appalachian high elevation wetland. Geomicrobiology Journal 29, 124138.CrossRefGoogle Scholar
Ketcham, R.A., Gautheron, C., Tassan-Got, L., 2011. Accounting for long alpha-particle stopping distances in (U-Th-Sm)/He geochronology: refinement of the baseline case. Geochimica et Cosmochimica Acta 75, 77797791.CrossRefGoogle Scholar
Kimberley, M.M., 1978. Paleoenvironmental classification of iron formations. Economic Geology 73, 215229.CrossRefGoogle Scholar
Klein, C., 2005. Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist 90, 14731499.CrossRefGoogle Scholar
Knoll, A.H., Swett, K., Mark, J., 1991. Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen. Journal of Paleontology 65, 531570.CrossRefGoogle ScholarPubMed
Konhauser, K.O., 1998. Diversity of bacterial iron mineralization. Earth-Science Reviews 43, 91121.CrossRefGoogle Scholar
Konhauser, K.O., Ferris, F.G., 1996. Diversity of iron and silica precipitation by microbial mats in hydrothermal waters, Iceland: implications for Precambrian iron formations. Geology 24, 323326.2.3.CO;2>CrossRefGoogle Scholar
Levett, A., Gagen, E.J., Rintoul, L., Guagliardo, P., Diao, H., Vasconcelos, P.M., Southam, G., 2020. Characterisation of iron oxide encrusted microbial fossils. Scientific Reports 10, 9889. ScholarPubMed
Marengo, J.A., 2004. Interdecadal variability and trends of rainfall across the Amazon Basin. Theoretical and Applied Climatology 78, 7996.CrossRefGoogle Scholar
Noffke, N., Gerdes, G., Klenke, T., Krumbein, W.E., 2007. Microbially induced sedimentary structures: a new category within the classification of primary sedimentary structures. Journal of Sedimentary Research 71, 649656.CrossRefGoogle Scholar
Preston, L.J., Shuster, J., Fernandez-Remolar, D., Banerjee, N.R., Osinski, G.R., Southam, G., 2011. The preservation and degradation of filamentous bacteria and biomolecules within iron oxide deposits at Rio Tinto, Spain. Geobiology 9, 233249.CrossRefGoogle Scholar
Riding, R., 2000. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47, 179214.CrossRefGoogle Scholar
Sabaj Perez, M.H., 2015. Where the Xingu bends and will soon break. American Scientist 103, 395403.CrossRefGoogle Scholar
Salama, W., El Aref, M.M., Gaupp, R., 2013. Mineral evolution and processes of ferruginous microbialite accretion—an example from the middle Eocene stromatolitic and ooidal ironstones of the Bahariya Depression, Western Desert, Egypt. Geobiology 11, 1528.CrossRefGoogle ScholarPubMed
Sawakuchi, A.O., Hartmann, G.A., Sawakuchi, H.O., Pupim, F.N., Bertassoli, D.J. Jr., Parra, M., Antinao, J.L., et al. , 2015. The Volta Grande do Xingu: Reconstruction of past environments and forecasting of future scenarios of a unique Amazonian fluvial landscape. Scientific Drilling 20, 2132.CrossRefGoogle Scholar
Schieber, J., Glamoclija, M., 2007. Microbial mats built by iron bacteria: a modern example from southern Indiana. In: Schieber, J., Bose, P.K., Eriksson, P.G., Banerjee, S., Sarkar, S., Altermann, W., Catuneau, O. (Eds.), Atlas of Microbial Mat Features Preserved Within the Clastic Rock Record. Elsevier, New York, pp. 233244.Google Scholar
Schmidt, B., Sánchez, L.A., Fretschner, T., Kreps, G., Ferrero, M.A., Sineriz, F., Szewzyk, U., 2014. Isolation of Sphaerotilus-Leptothrix strains from iron bacteria communities in Tierra del Fuego wetlands. FEMS Microbiology Ecology 90, 454466.Google ScholarPubMed
Schopf, J.M., 1975. Modes of fossil preservation. Review of Palaeobotany and Palynology 20, 2753.CrossRefGoogle Scholar
Schwertmann, U., Carlson, L., 1994. Aluminum influence on iron oxides: xvii. Unit-cell parameters and aluminum substitution of natural goethites. Soil Science Society America Journal 58, 256261.CrossRefGoogle Scholar
Shuster, D.L., Vasconcelos, P.M., Heim, J.A., Farley, K.A., 2005. Weathering geochronology by (U-Th)/He dating of goethite. Geochimica et Cosmochimica Acta 69, 659673.CrossRefGoogle Scholar
Silva, M.S.R., Ríos-Villamizar, E.A., Miranda, S.A.F., Ferreira, S.J.F., Bringel, S.R.B., Gomes, N.A., Silva, L.M., Pascoaloto, D., Santana, G.P., Cunha, H.B., 2019. A contribution to the hydrochemistry and water typology of the Amazon River and its tributaries. Caminhos da Geografia 20, 360374.CrossRefGoogle Scholar
Sioli, H., 1984. The Amazon: Limnology and Landscape Ecology of a Mighty Tropical River and its Basin. Dr W. Junk Publishers, Dordrecht.CrossRefGoogle Scholar
Sousa, L.M., Chaves, M.S., Akama, A., Zuanon, J., Sabaj, M.H., 2018. Platydoras birindellii, new species of striped raphael catfish (Siluriformes: Doradidae) from the Xingu basin, Brazil. Academy of Natural Sciences of Philadelphia 166. Scholar
Sousa, L.M., Lucanus, O., Arroyo-Mora, J.P., Kalacska, M., 2021. Conservation and trade of the endangered Hypancistrus zebra (Siluriformes, Loricariidae), one of the most trafficked Brazilian fish. Global Ecology and Conservation 27, e01570. Scholar
Sowers, T.D., Holden, K.L., Coward, E.K., Sparks, D.L., 2019. Dissolved organic matter sorption and molecular fractionation by naturally occurring bacteriogenic iron (oxyhydr)oxides. Environmental Science & Technology 53, 42954304.CrossRefGoogle Scholar
Vasconcelos, P.M., Heim, J.A., Farley, K.A., Monteiro, H., Waltenberg, K., 2013. 40Ar/39Ar and (U-Th)/He, 4He/3He geochronology of landscape evolution and channel iron deposit Genesis at Lynn Peak, Western Australia. Geochimica et Cosmochimica Acta 117, 283312.CrossRefGoogle Scholar
Walter, M.R., 1976. Stromatolites. Elsevier, Amsterdam.Google Scholar
Whitaker, A.H., Austin, R.E., Holden, K.L., Jones, J.L., Michel, F.M., Peak, D., Thompson, A., Duckworth, O.W., 2021. The structure of natural biogenic iron (oxyhydr)oxides formed in circumneutral pH environments, Geochimica et Cosmochimica Acta 308, 237255.CrossRefGoogle ScholarPubMed
Williams, A.J., Alpers, C.N., Sumner, D.Y., Campbell, K.M., 2017. Filamentous hydrous ferric oxide biosignatures in a pipeline carrying acid mine drainage at Iron Mountain Mine, California. Geomicrobiology Journal 34, 193206.CrossRefGoogle Scholar
Winemiller, K.O., McIntyre, P.B., Castello, L., Fluet-Chouinard, E., Giarrizzo, T., Nam, S., Baird, I.G., Darwall, W., et al. , 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128129.CrossRefGoogle ScholarPubMed
Zajic, J.E., 1969. Microbial Biogeochemistry. Academic Press, New York.Google Scholar