Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-25T00:35:24.577Z Has data issue: false hasContentIssue false

Pollen- and Diatom-Inferred Climatic and Hydrological Changes in Sumxi Co Basin (Western Tibet) since 13,000 yr B.P.

Published online by Cambridge University Press:  20 January 2017

Elise Van Campo
Affiliation:
Laboratoire de Géologie du Quaternaire, UPR 1201 CNRS Luminy, case 907, 13288 Marseille Cedex 2, France
Francoise Gasse
Affiliation:
Laboratoire d'Hydrologie et de Géochimie isotopique, URA 723-GDR 970, Batiment 504, Université Paris-Sud, 91405 Orsay Cedex, France

Abstract

Although the Tibetan Plateau greatly influences the atmospheric circulation of the Nortbern Hemisphere, few continuous paleoclimatic records are available from the plateau. A 13,000-yr pollen and diatom record from the Sumxi-Longmu Co basin in western Tibet gives information on major changes both in regional vegetation and in local hydrology. After the basin first filled ca. 13,000 yr B.P., a dry spell occurred about 10,500 yr B.P. within the interval spanned by the European Younger Dryas chronozone. A major environmental change occurred suddenly at ≈10,000 yr B.P., with the establishment of wet conditions, and was followed by a long-term trend toward maximum aridity, which lasted approximately 6000 yr. Short-term oscillations are superimposed on this general climatic change with a major reversal event about 8000 yr B.P. and a second wet pulse leading to a maximum lake volume ca. 7500-6000 yr B.P. Maximum aridity occurred 4300 yr B.P. The major environmental fluctuations recorded at Sumxi-Longmu Co appear in phase with climatic changes recognized in north tropical Africa, suggesting that the 8000 to 7000-yr-B.P. event was caused by an abrupt disequilibrium in the climatic system, as was the Younger Dryas and possibly the 4300-yr-B.P. event.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arakawa, H. (1969). “Climates of Northern and Eastern Asia, World Survey of Climatology,” Vol. 8.Google Scholar
Avouac, J. P., and Dobremez, J. F. (1992). “Evidence for a 9-12 yr Cycle in a Long Profile across the Holocene Regressive Shorelines of Longmu Co?” International Symposium on Karakorum and Kunlun Mountains Kashi, China, 5-9 June 1992, Abstracts, p. 65.Google Scholar
Berger, A. L. (1978). Long-term variations of caloric solar radiation resulting from the earth’s orbital elements. Quaternary Research 9, 139167.CrossRefGoogle Scholar
Birks, H. J. (1973). Modern pollen rain studies in some artic and alpine environments. In “Quaternary Plant Ecology” (Birks, H. J. B. and West, R. G., Eds.), pp. 142148. Blackwell Scientific, Oxford.Google Scholar
Broecker, W. S. Bond, G., and Klas, M. (1990). A salt oscillator in the Glacial Atlantic?: The concept. Paleoceanography 5, 469477.CrossRefGoogle Scholar
Chawla, S. Dhir, R. P., and Singhvi, A. K. (1992). Thermolumines-cence chronology of sand profiles in the Thar desert and their implications. Quaternary Science Reviews 11, 2532.CrossRefGoogle Scholar
Cholnoky, B. J. (1968). Die Okologie des Diatomeen in Binnenge-wässerm, Cramer, Lehre.Google Scholar
Ciais, P. Petit, J. R. Jouzel, J. Lorius, C Barkow, N. I. Lipenkow, V., and Nikolaïev, V. (1991). Evidence for an early Holocene climatic optimum in the Antarctic deep-ice core record. Climate Dynamics 6, in press.Google Scholar
Cleve-Euler, A. Die diatomeen von Sweden und Finnland, Kungl. Svenska Vetensk—Akad. Handl. Part 1, 1951, 2(1): Part 5, 1952. 3(3); Part 2, 1953, 4(1); Part 3, 1953, 4(5); Part 4, 1995, 5(4).Google Scholar
Cohmap Members (1988). Climatic changes of the last 18,000 Years: Observations and model simulations. Science 241, 10434052.CrossRefGoogle Scholar
Cour, P. (1974). Nouvelles techniques de détection des flux et des re-tombées pollinques: Étude de la sédimentation des pollens et des spores à la surface du sol. Pollen et Spores 16, 103142.Google Scholar
Dobremez, F. (1992). “Air Climate and Plant Growth Ecophysiology on High Plateau of Karakorum and Kunlun Area.” International Symposium on Karakorum and Kunlun Mountains Kashi, China, 5-9 June 1992, Abstracts., p. 118.Google Scholar
El-Moslimany, A. P. (1990). Ecological significance of common nonarboreal pollen: Examples from drylands of the Middle East. Review of Paleobotany and Palynology 64, 343350.CrossRefGoogle Scholar
Fang, Jin-Qi (1991). Lake evolution during the past 30,000 years in China, and its implication for the environmental change. Quaternary Research 36, 124.CrossRefGoogle Scholar
Flohn, H. (1981). The elevated heat source of the Tibetan highlands and its role for the large scale atmospheric circulation. In “Geological and Ecological Studies on Qinghai-Xigang Plateau,” Vol. 2, pp. 14631469. Science Press, Beijing; Gordon and Breach, New York.Google Scholar
Foiland, C. K. Kartl, T. R., and Vinnikov, K. Y. (1990). Observed climate variations and change. In “Climate Change, IPCC Scientific Assessment. SMO/UNEP” (Houghton, J. T., et at., Eds.). Cambridge Univ. Press, Cambridge.Google Scholar
Fritz, S. C Juggins, S. Battarbee, R. W., and Engstrom, D. R. (1991). Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature 352, 706708.CrossRefGoogle Scholar
Gasse, F. (1977). Evolution of lake Abhé (Ethiopia and T.F.A.I.) from 70000 B.P. Nature 2, 4245.CrossRefGoogle Scholar
Gasse, F. (1986). “East African Diatoms. Taxonomy, Ecological Distribution.” Bibliotheca Diatomologica, Band 11. Cramer, Stuttggart.Google Scholar
Gasse, F. Arnold, M. Fontes, J. C Fort, M. Gibert, E. Huc, A. Li Bingyan, Li Yuanfang, Liu Qing, Melières, F. Van Campo, E. Wang Fubao, , and Zhan Qingsong, . (1991). A 13000 year climate record from western Tibet. Nature 353, 742745.CrossRefGoogle Scholar
Gasse, F., and Fontes, J. C. (1992). Climatic changes in northwest Africa during the last deglaciation (16-7 ka B.P.). In “The Last Degla-ciation” (Broecker, W. and Bard, E., eds). Nato series (in press).Google Scholar
Gasse, F. Téhet, R. Durand, A. Gibert, E. Fontes, J. C. (1990). The arid-humid transition over the Sahara during the last deglaciation. Nature 346, 141146.CrossRefGoogle Scholar
Gibert, E. Arnold, M. Conrad, D. De Deccker, P. Fontes, J. C Gasse, F., and Kassir, A. (1990). Retour des conditions humides au Tardiglaciaire au Sahara septentrional (sebkha Mellala, Algèrie). Bulletin de la Societe Géolagique de France 8, 497504.CrossRefGoogle Scholar
Gillespie, R., and Street-Perrott, F. A. (1983). Post glacial arid eposides in Ethiopia have implications for climate prediction. Nature 306, 680683.CrossRefGoogle Scholar
Huang, C. X., and Liang, Y. L. (1981). Based upon palynological study to discuss the natural environmental of the Central and Southern Qinghai-Xizang Plateau of Holocene. In “Geological and Ecological Studies Studies of Qinghai-Xizang” Vol. 1, pp. 215224. Science Press, Beijing; Gordon and Breach, New York.Google Scholar
Hustedt, F. (1922). Baciiiariailes aus Innerasian, gesammelt von Sven Hedin. In “Southern Tibet” Hedin, (ed.), 6(3), pp. 107152. Bot., Stockholm.Google Scholar
Hustedt, F. (1927-1966). Die kieselalgen Deutschlands, Osterreichs und der Schweiz. Dr. In L. Rabenhorsts Kryptogamenflora von Deutschlands, Osterreichs und der Schweiz,” Vol. 7, 1927-1930; Part 1; 1959, part 2; 1966, part 3. Akademische Verlagsgeselishaft, Leipzig.Google Scholar
Kashiwaya, K. Yaskawa, K. Yuan, B. Liu, J. Gu, Z. Cong, S., and Masuzawa, T. (1991). Paleohydrological processes in Siling-Co (lake) in the Qing-Zang (Tibetan) Plateau based on the physical properties of its bottom sediments. Geophysical Research Letters 18, 17791781.CrossRefGoogle Scholar
Kou You-Guan, Zeng Qun-Zhu, Xie Wei-rong, , and Xiao Shu, (1981). On the radiation and heat balance over Qinghai-Xizang plateau. In “Geological and Ecological Studies on Qinghai-Xigang Plateau” Vol. 2, pp. 15531568. Science Press, Beijing; Gordon and Breach, New York.Google Scholar
Krammer, K., and Lange-Berthalot, H. (1986). In “Süsswasserflora von Mitteleuropa. Bacillariophyceae. Naviculaceae” (Pasher, A., Ed.). Fisher, Stuttggart.Google Scholar
Krammer, K., and Lange-Berthalot, H. (1988). In “Süsswasserflora von Mitteleuropa. Bacillariophyceae. Bacillariaceae, Epithemiaceae, Surirellaceae” (Pasher, A., Ed.), Band 2/2. Fisher, Stuttggart.Google Scholar
Kudrass, H. R. Erienkeuser, H. Vollbrecht, R., and Weiss, W. (1991). Global nature of the Younger Dryas cooling event inferred from oxygen isotope data from Sulu Sea cores. Nature 349, 406408.CrossRefGoogle Scholar
Li, B. Yang, Y. Zhang, Q., and Wang, F. (1982). On the environmental evolution of Xizang (Tibet) in Holocene. In “Quaternary Geology and Environment of China” (Liu, T. Sun, Y. Lu, R. Zhao, X. You, Y., and Wei, L., Eds.), pp. 173177. Quaternary Research Association China; China Ocean Press.Google Scholar
Li, J. J. (1990). The patterns of environmental evolution in northwestern China since the late Pleistocene. Quaternary Sciences 3.Google Scholar
Li, J. J., and Zheng, B. X. (1981). The monsoon maritime glaciers in the southeastern part of Xizang. In “Geological and Ecological Studies on Qinghai-Xigang Plateau,” Vol. 2, pp. 15991609. Science Press, Beijing; Gordon and Breach, New York.Google Scholar
Lin Zhen-Yao, and Wu Xiang-ding, (1981). Climatic classification of Qinghai-Xizang Plateau. In “Geological and Ecological Studies on Qinghai-Xigang Plateau,” Vol. 2, pp. 15751579, Science Press, Beijing; Gordon and Breach, New York.Google Scholar
Lister, G. S. Kelts, K. Zao, C. K. Yu, J. K., and Niessen, K. (1991). Lake Qinghai, China: Closed-basin lake levels and the oxygen isotope record for ostracoda since the latest Pleistocene. Palaeogeog-raphy, Palaeoclimatology, Palaeoecology 84, 141162.CrossRefGoogle Scholar
Liu, Q. Avouac, J. P. Tapponnier, P., and Zhang, Q. (1991). Field evidence for holocene and active faulting in western Qangtang, EUGUI, Strasbourg. Terra Abstracts 3, 265.Google Scholar
Lowe, R. L. (1974). “Environmental Requirements and Pollution Tolerances of Freshwater Diatoms.” National Environmental Research Center, U.S. Environmental Protection Agency, Cincinnati.Google Scholar
Maley, J. (1981). Études palynologiques dans le bassin du Tchad et paléoclimatologie de l’Afrique nord tropicale de 30,000 B.P. à l’épo-que actuelle. Trav. Docum. ORSTOM, Paris, Vol. 129.Google Scholar
Mereschkowsky, C. (1906). Diatomeenalgen Tibets (Mongolei und Kam). Arb. Exp. Kais, russ. geogr. Ges. 1899-1901, unter Ltg von P.K. Koslow. Bulletin de la Societie Imperiale des Russe Géographique St. Petersbourg 8, 383395.Google Scholar
Rötlishberger, F. (1986). “10000 jahreGletchergeschichte des Erde.” Verlag Sauerlände Aarou, Switzerland.Google Scholar
Servant, M. (1973). “Séquences continentales et variations climatiques: Évolution du bassin du Tchad au Cénozoique supérieur.” Thesis, University of Paris.Google Scholar
Simonsen, R. (1987). “Atlas and Catalogue of the Diatom types of Friedrich Hustedt,” Vol. 1, catalogue; Vol. 2, plates 1-395; Vol. 3, plates 396772. J. Cramer, Berlin.Google Scholar
Singh, G. Joshi, R. D. Chopra, S. K., and Singh, A. B. (1974). Late Quaternary history of vegetation and climate of the Rajastha desert. India Philosophical Transcripts of the Royal Society of London B 267, 467501.Google Scholar
Singh, G. Wasson, R. J., and Agrawal, D. P. (1990). Vegetational and seasonal climatic changes since the last full glacial in the Thar Desert, northwestern India. Review of Paiaeobotany and Palynology 64, 351358.CrossRefGoogle Scholar
Steeves, M. W., and Barghoom, E. S. (1959). The pollen of Ephedra. Journal of the Arnold Arboretum 40, 221255.CrossRefGoogle Scholar
Stuiver, M. Braziunas, T. F. Becker, B., and Kromer, B. (1991). Climatic, solar, oceanic and geomagnetic influences on Late-Glacial and Holocene atmospheric 14C/12C changes. Quaternary Research 35, 124.CrossRefGoogle Scholar
Swain, A. M. Kutzbach, J. E., and Hastenrath, S. (1983). Estimates of Holocene precipitation for Rajasthan, India, based on pollen and laka-level data. Quaternary Research 19, 117.CrossRefGoogle Scholar
Talbot, M. R. Livingstone, D. A. Palmer, D. G. Maley, J. Melack, J. M. Delibrias, G., and Gulliksen, J. (1984). Preliminary results from sediment core from lake Bosumtwi, Ghana. Palaeoecology of Africa 16, 173192.Google Scholar
Thompson, L. G. Mosley-Tompson, E. Davis, M. E. Bolzan, J. F. Dai, J. Yao, T. Gundestrup, N. Wu, X. Klein, L., and Xie, Z. (1989). Holocene-Late Pleistocene Climatic ice core records from Qinghai-Tibetan Plateau. Science 246, 474477.CrossRefGoogle ScholarPubMed
Walter, H. (1971). “Ecology of Tropical and Subtropical Vegetation.” Oliver and Boyd, Edinburgh.Google Scholar
Wang, C. (1961). “The Forests of China, with Survey of Grassland and Desert Vegetation,” Publication 5. Maria Moors Cabot Foundation. Cambridge MA.Google Scholar
Wang, F. B., and Fan, C. Y. (1987). Climatic changes in the Qinghai-Xizang (Tibetan) region of China during the Holocene. Quaternary Research 28, 5060.Google Scholar
Wang, J. T. (1981). On the fundamental characteristics of the steppe vegetation in Xizang Plateau. In “Geological and Ecological Studies on Qinghai-Xigang Plateau,” Vol. 2, pp. 19291936. Science Press, Beijing; Gordon and Breach, New York.Google Scholar
Wasson, R. J. Smith, G. I., and Agrawal, D. P. (1984). Late Quaternary sediments, minerals, and inferred geochemical history of Did-wana lake, Thar desert, India. Palaeogeography, Palaeoclimatology, Palaeoecology 46, 345372.CrossRefGoogle Scholar
Weng, C. Y. (1989). “Numerical Characteristics of the Pollen Composition of Surface Soils from the West Kunlun Mountains,” Master thesis, Institute of Botany, Academia Sinica, Beijing.Google Scholar
Zhao, W. L., and Morgan, W. J. (1985). Uplift of the Tibetan Plateau. Tectonics 4, 359369.CrossRefGoogle Scholar
Zheng Du, Zhang Young-Zu, , and Yang Qin-Ye, (1981). Physico-geographical differentiation of the Qinghai-Xizang plateau. In “Geological and Ecological Studies on Qinghai-Xigang Plateau,” Vol. 2, pp. 18511860. Science Press, Beijing; Gordon and Breach, New York.Google Scholar
Zheng, M. Ed. (1989). “Saline Lakes on the Qinghai-Xizang (Tibet) Plateau.” Beijing Scientific and Technical Publishing House, Beijing.Google Scholar
Zhou, S. Z. Chen, F. H. Pan, B. T. Cao, J. X. Li, J. J., and Derby-shire, E. (1991). Environmental change during the Holocene in west-ern China on a millennial timescale. The Holocene 1, 151156.CrossRefGoogle Scholar
Zhou Weijian, An Zhisheng, Head, J. Donahue, D. J. Ren Jianznang, Lin Benhai, Zhou Mingfu, Yan Yuansheng, , and Zhang Jingzhao, (1991). 14C dating and measurements of climate proxy indices of loess sequence to record paleomonsoon variation on the loess plateau of China during the past 16000 years. Radiocarbon 33, 259.Google Scholar