Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-10T17:01:16.189Z Has data issue: false hasContentIssue false

Pleistocene Chronology: Long or Short?

Published online by Cambridge University Press:  20 January 2017

H.B.S. Cooke*
Affiliation:
Department of Geology, Dalhousie University, Halifax N.S., Canada

Abstract

European geologists, in general, have tended to favor a “short” chronology for the glacial Pleistocene, with four major glacial cycles in the past 500,000 or 600,000 yr. Interpretation of ocean floor sediments by Emiliani and others has accorded with this view, in contrast to the “long” chronology of Ericson and Wollin and their followers, who spread the four North American glacial episodes over a 2-m.y. period. An examination of the available radiometric dates and age estimates from paleomagnetic polarity zones serves to confirm Richmond's view that the four major European glacials do not equate with the four North American glacials in a simple one-to-one manner, but that the Illinoian matches the Elster (Mindel) rather than the Saale (Riss). The Alpine Günz is then equated broadly with the Kansan and overlaps in time with the Jaramillo normal polarity event at about 900,000 y.a. The Nebraskan is older than 1.2 m.y. and is thus coeval with the European Upper Villafranchian, within which the Donau and Biber glacial events may be traced. Montane glaciation certainly extended back into the Tertiary but cold pulses of sufficient duration to produce continental glaciation were more marked through the past 1.5 m.y. More critical studies of the terrestrial record are needed before firm correlations can be made.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azzaroli, A., (1970). Villafranchian correlations based on large mammals. Giornale di Geologia 35, 121.Google Scholar
Beard, J.H., (1969). Pleistocene paleotemperature record based on planktonic foraminifera, Gulf of Mexico. Gulf Coast Association of Geological Societies Transactions 19, 535553.Google Scholar
Birkeland, P.W., Crandell, D.R., Richmond, G.M., (1970). Status of correlation of Quaternary stratigraphical units in the western conterminous United States. Quaternary Research 1, 208227.Google Scholar
Blanc, A.C., (1957). On the Pleistocene sequence of Rome: paleoecologic and archeologic correlations. Quaternaria 4, 95109.Google Scholar
Broecker, W.S., Ku, T.L., (1969). Caribbean Cores P6304-8 and P6304-9: New analyses of absolute chronology. Science 166, 404406.CrossRefGoogle Scholar
Broecker, W.S., Van Donk, J., (1970). Insolation changes, ice volumes, and the O18 record in deep-sea cores. Reviews of Geophysics and Space Physics 8, 169198.CrossRefGoogle Scholar
Cox, A., (1969). Geomagnetic reversals. Science 163, 237245.Google Scholar
Cox, A., Doell, R.R., Dalrymple, G.B., (1963). Geomagnetic polarity epochs and Pleistocene geochronometry. Nature (London) 198, 10491051.Google Scholar
Curry, R.P., (1966). Glaciation about 3,000,000 years ago in the Sierra Nevada. Science 154, 770771.CrossRefGoogle Scholar
Dalrymple, G.B., (1972). Potassium-argon dating of geomagnetic reversals and North American glaciations. Bishop, W.W., Miller, J., Calibration of Hominoid Evolution Scottish Universities Press Edinburgh 107134.Google Scholar
Denton, G.H., Armstrong, R.L., (1969). Miocene-Pliocene glaciations in southern Alaska. American Journal of Science 267, 11211142.Google Scholar
Devereux, I., Hendy, C.H., Vella, P., (1970). Pliocene and early Pleistocene sea temperature fluctuations, Mangaopari Stream, New Zealand. Earth and Planetary Science Letters 8, 163168.CrossRefGoogle Scholar
Dort, W., (1972). Stadial subdivisions of early Pleistocene glaciations in central United States—a developing chronology. Boreas 1, 5661.Google Scholar
Eardley, A.J., Gvodetsky, V., (1960). Analysis of Pleistocene core from Great Salt Lake, Utah. Geological Society of America Bulletin 71, 163168.CrossRefGoogle Scholar
Eberl, B., (1930). Die Eiszeitenfolge im nordlichen Alpenvorlände. Dr. B. Filser Augsburg.Google Scholar
Emiliani, C., (1955). Pleistocene temperatures. Journal of Geology 63, 538578.Google Scholar
Emiliani, C., (1966). Paleotemperature analysis of the Caribbean cores P6304-8 and P6304-9, and a generalized temperature curve for the past 425,000 years. Journal of Geology 74, 109126.Google Scholar
Ericson, D.B., Ewing, M., Wollin, G., (1964). The Pleistocene epoch in deep-sea sediments. Science 146, 723732.CrossRefGoogle ScholarPubMed
Ericson, D.B., Wollin, G., (1968). Pleistocene climates and chronology in deep-sea sediments. Science 162, 12271234.Google Scholar
Ericson, D.B., Wollin, G., (1970). Pleistocene climates in the Atlantic and Pacific Oceans: a comparison based on deep-sea sediments. Science 167, 14831485.Google Scholar
Evernden, J.F., Curtis, G.H., (1965). Potassium-argon dating of late Cenozoic rocks in East Africa and Italy. Current Anthropology 6, 343385.Google Scholar
Evernden, J.F., Savage, D.E., Curtis, G.H., James, G.T., (1964). Potassium-argon dates and the Cenozoic mammalian chronology of North America. American Journal of Science 262, 145198.Google Scholar
Flint, R.F., (1971). Glacial and Quaternary Geology. John Wiley New York.Google Scholar
Flint, R.F., Gale, W.A., (1958). Stratigraphy and radiocarbon dates at Searles Lake, California. American Journal of Science 256, 689714.CrossRefGoogle Scholar
Frechen, J., Lippolt, H.J., (1965). Kalium-Argon-Daten zum Alter des Laacher Vulkanismus, der Rheinterrassen und der Eiszeiten. Eiszeitalter und Gegenwart 16, 530.Google Scholar
Grommé, C.S., Hay, R.L., (1970). Geomagnetic polarity epochs: age and duration of the Olduvai normal polarity event. Earth and Planetary Science Letters 10, 179185.Google Scholar
Hays, J.D., (1965). Radiolaria and late Tertiary and Quaternary history of Antarctic seas. Antarctic Research Series of the American Geophysical Union 5, 125134.Google Scholar
Hays, J.D., (1967). Quaternary sediments of the antarctic Ocean. Progress in Oceanography 4, 117131.CrossRefGoogle Scholar
Hays, J.D., Opdyke, N.D., (1967). Antarctic Radiolaria, magnetic reversals, and climatic change. Science 158, 10011011.Google Scholar
Hibbard, C.W., (1941). The Borchers fauna, a new Pleistocene interglacial fauna from Meade County, Kansas. Kansas Geological Survey Bulletin 38, 197220.Google Scholar
Hibbard, C.W., (1944). Stratigraphy and vertebrate paleontology of Pleistocene deposits of Southwestern Kansas. Geological Society of America Bulletin 55, 707754.Google Scholar
Hopkins, D.M., MacNeil, F.S., Merklin, R.L., Petrov, O.M., (1965). Quaternary correlations across Bering Strait. Science 147, 11071114.CrossRefGoogle ScholarPubMed
Isaac, G.L., (1972). Chronology and the tempo of cultural change during the Pleistocene. Bishop, W.W., Miller, J., Calibration of hominoid evolution Scottish University Press Edinburgh 381430.Google Scholar
Izett, G.A., Wilcox, R.E., Obradovich, J.D., Reynolds, R.L., (1971). Evidence for two Pearlette-like ash beds in Nebraska and adjoining areas. Geological Society of America 1971 Meeting Abstracts 3, 610.Google Scholar
Izett, G.A., Wilcox, R.E., Powers, H.A., Desborough, G.A., (1970). The Bishop ash bed; a Pleistocene marker bed in the Western United States. Quaternary Research 1, 121132.Google Scholar
Kennett, J.P., (1970). Pleistocene paleoclimates and foraminiferal biostratigraphy in subantarctic deep sea cores. Deep Sea Research 17, 125140.Google Scholar
Kennett, J.P., Watkins, N.D., Vella, P., (1971). Paleomagnetic chronology of Pliocene-Early Pleistocene climates and the Plio-Pleistocene boundary in New Zealand. Science 171, 276279.Google Scholar
Kent, D., Opdyke, N.D., Ewing, M., (1971). Climate change in the north Pacific using icerafted detritus as a climatic indicator. Geological Society of America Bulletin 82, 27412754.Google Scholar
Kukla, G.J., (1970). Correlations between loesses and deep-sea sediments. Geologiska Föreningens i Stockholm Förhandlingar 92, 148180.Google Scholar
Kurtén, B., (1960). Faunal turnover rates for the Pleistocene and late Pliocene. Societas Scientiarum Fennica Commentationes Biologicae 21, 114.Google Scholar
Leakey, M.D., (1971). Discovery of post-cranial remains of Homo erectus and associated artefacts in Bed IV at Olduvai Gorge, Tanzania. Nature (London) 232, 380383.Google Scholar
Lona, F., (1963). Floristic and glaciologic sequence (from Donau to Mindel) in a complete diagram of the Leffe deposit. Geobotanische Institut Rubel (Zurich), Berichte 34, 6466.Google Scholar
Malde, H.E., Powers, H.A., (1962). Upper Cenozoic stratigraphy of western Snake River Plains, Idaho. Geological Society of America Bulletin 73, 11971220.CrossRefGoogle Scholar
Margolis, S.V., Kennett, J.P., (1970). Antarctic glaciation during the Tertiary recorded in sub-Antarctic deep-sea cores. Science 170, 10851087.Google Scholar
McManus, D.A., (1970). Criteria of climatic change in the inorganic components of marine sediments. Quaternary Research 1, 72102.Google Scholar
Olausson, E., (1971). Oceanographic aspects of the Pleistocene of Scandinavia. Geologiska Föreningens i Stockholm Förhandlingar 93, 459475.Google Scholar
Naeser, C.W., Izett, G.A., Wilcox, R.E., (1971). Zircon fission-track ages of Pearlette-like volcanic ash beds in the Great Plains. Geological Society of America 1971 Meeting Abstracts 3, 657.Google Scholar
Penck, A., (1882). Die Vergletscherung der deutschen Alpen. J. A. Barth Leipzig.Google Scholar
Penck, A., Brückner, , (1909). Die Alpen im Eiszeitalter. Tauchnitz Leipzig 1199.Google Scholar
Richmond, G.M., (1965). Glaciation of the Rocky Mountains. Wright, H.E., Frey, D.G., The Quaternary of the United States Princton University Press 217230.Google Scholar
Richmond, G.M., (1970). Comparison of the Quaternary stratigraphy of the Alps and Rocky Mountains. Quaternary Research 1, 328.Google Scholar
Richter, K., (1958). Fluortests quartäres Knochern im ihrer Bedeutung fur die absolute chronologie des Pleistozäns. Eiszeitalter und Gegenwart 9, 1827.Google Scholar
Rona, E., Emiliani, C., (1969). Absolute dating of caribbean cores P6304-8 and P6304-9. Science 163, 6668.Google Scholar
Ruddiman, W.F., (1971). Pleistocene sedimentation in the equatorial Atlantic: stratigraphy and faunal paleoclimatology. Geological Society of America Bulletin 82, 283302.Google Scholar
Rutten, M.G., (1959). Paleomagnetic reconnaissance of mid-Italian volcanoes. Geologie en Mijnbouw 10, 373374.Google Scholar
Schaefer, I., (1956). Sur la division du Quaternaire dans l'avant pays des Alpes en Allemagne. IV Congress INQUA Actes 2, 910.Google Scholar
Savage, D.E., Curtis, G.H., (1970). The Villafranchian Stage-Age and its radiometric dating. Geological Society of America Special Paper 124, 207231.Google Scholar
Van Montfrans, H.M., Hospers, J., (1969). Preliminary report on the stratigraphical position of the Matuyama/Brunhes magnetic field reversal in the Quaternary sediments of the Netherlands. Geologie en Mijnbouw 48, 565572.Google Scholar
Zagwijn, W.H., (1963). Pleistocene stratigraphy in the Netherlands, based on changes in vegetation and climate. Nederlandsch geologie en mijnbouw genootskap, Verhandelingen, Geological Series 21-2, 173196.Google Scholar
Zeuner, F.E., (1945). The Pleistocene Period. The Ray Society London.Google Scholar
Zeuner, F.E., (1946). Dating the Past: An Introduction to Geochronology. Methuen London.Google Scholar