Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-2wqtr Total loading time: 0.226 Render date: 2021-09-19T13:20:19.646Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Paleoenvironmental context of the early Neanderthals of Poggetti Vecchi for the late middle Pleistocene of Central Italy

Published online by Cambridge University Press:  30 August 2017

Marco Benvenuti*
Affiliation:
Dipartimento di Scienze della Terra, Università di Firenze, 50121 Florence, Italy
Jean-Jacques Bahain
Affiliation:
Département de Préhistoire du Muséum National d’Histoire Naturelle, UMR 7194 du CNRS, 75013 Paris, France
Chiara Capalbo
Affiliation:
Dipartimento di Scienze della Terra, Università di Firenze, 50121 Florence, Italy Dipartimento di Scienze della Terra e del Mare (DISTEM), Università di Palermo, 90123 Palermo, Italy
Chiara Capretti
Affiliation:
CNR - IVALSA, 50019 Florence, Italy
Francesco Ciani
Affiliation:
Dipartimento di Biologia, Università degli Studi di Firenze, 50019 Florence, Italy
Carmine D’Amico
Affiliation:
Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090 Pesche (Isernia), Italy
Daniela Esu
Affiliation:
Dipartimento di Scienze della Terra, Università Sapienza, 00185 Rome, Italy
GIanna Giachi
Affiliation:
Soprintendenza Archeologia della Toscana, 50121 Florence, Italy
Claudia Giuliani
Affiliation:
Dipartimento di Biologia, Università degli Studi di Firenze, 50019 Florence, Italy
Elsa Gliozzi
Affiliation:
Dipartimento di Scienze, Università Roma TRE, 00146 Rome, Italy
Simona Lazzeri
Affiliation:
Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090 Pesche (Isernia), Italy
Nicola Macchioni
Affiliation:
Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090 Pesche (Isernia), Italy
Marta Mariotti Lippi
Affiliation:
Dipartimento di Biologia, Università degli Studi di Firenze, 50019 Florence, Italy
Federico Masini
Affiliation:
Dipartimento di Scienze della Terra e del Mare (DISTEM), Università di Palermo, 90123 Palermo, Italy
Paul Peter A. Mazza
Affiliation:
Dipartimento di Scienze della Terra, Università di Firenze, 50121 Florence, Italy
Pasquino Pallecchi
Affiliation:
Dipartimento di Scienze, Università Roma TRE, 00146 Rome, Italy
Anna Revedin
Affiliation:
Dipartimento di Chimica, Università degli Studi di Torino, 10125 Turin, Italy
Andrea Savorelli
Affiliation:
CNR –IGAG, 00015 Rome, Italy
Marco Spadi
Affiliation:
Istituto Italiano di Preistoria e Protostoria, 50121 Florence, Italy
Lorena Sozzi
Affiliation:
Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090 Pesche (Isernia), Italy
Amina Vietti
Affiliation:
Département de Préhistoire du Muséum National d’Histoire Naturelle, UMR 7194 du CNRS, 75013 Paris, France Dipartimento di Chimica, Università degli Studi di Torino, 10125 Turin, Italy
Mario Voltaggio
Affiliation:
CNR –IGAG, 00015 Rome, Italy
Biancamaria Aranguren
Affiliation:
Soprintendenza Archeologia della Toscana, 50121 Florence, Italy
*Corresponding
*Corresponding author at: Dipartimento di Scienze della Terra, Università di Firenze, 50121 Florence, Italy. E-mail address: ma.benvenuti@unifi.it. (M. Benvenuti).

Abstract

Work on thermal pools at Poggetti Vecchi in Grosseto, Italy, exposed an up to 3-meter-thick succession of seven sedimentary units. Unit 2 in the lower portion of the succession contained vertebrate bones, mostly of the straight-tusked elephant, Palaeoloxodon antiquus, commingled with stone, bone, and wooden tools. Thermal carbonates overlying Unit 2 are radiometrically dated to the latter part of the middle Pleistocene. This time span indicates that early Neanderthals produced the human artifacts from Poggetti Vecchi. The elephant bones belong to seven individuals of different ages. Sedimentary facies analysis and paleoecological evidence suggest a narrow lacustrine-palustrine embayment affected by water-level fluctuations and, at times, by hydrothermal water. Cyclic lake-level variations were predominantly forced by the rapid climatic fluctuations that occurred at Marine Isotope Stage (MIS) 6–7 transition and throughout the MIS 6. Possibly an abrupt, intense, and protracted cold episode during the onset of MIS 6 led to the sudden death of the elephants, which formed an unexpected food resource for the humans of the area. The Poggetti Vecchi site adds new information on the behavioral plasticity and food procurement strategies that early Neanderthals were able to develop in Italy during the middle to the late Pleistocene transition.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abruzzese, C., Aureli, D., Rocca, R., 2015. Assessment of the Acheulean in Southern Italy: New study on the Atella site (Basilicata, Italy). Quaternary International 393, 158168.CrossRefGoogle Scholar
Auguste, P., 1992. Etude Archeozoologique des grands mammiferes du site Pleistocene Moyen de Biache-Saint-Vaast (Pas-de-Calais, France): apports Biostratigraphiques et Palethnographiques. L’Anthropologic 96, 4970.Google Scholar
Aureli, D., Contardi, A., Giaccio, B., Jich, B., Lemorini, C., Madonna, S., Magri, D., et al 2015. Palaeoloxodon and human interaction: depositional setting, chronology and archaeology at the Middle Pleistocene Ficoncella Site (Tarquinia, Italy). PLOS ONE 10: e0124498. http://dx.doi.org/10.1371/journal.pone.0124498.CrossRefGoogle Scholar
Ayalon, A., Bar-Matthews, M., Kaufman, A., 2002. Climatic conditions during marine oxygen isotope stage 6 in the eastern Mediterranean region from the isotopic composition of speleothems of Soreq Cave, Israel. Geology 30, 303306.2.0.CO;2>CrossRefGoogle Scholar
Baldi, P., Bellani, S., Ceccarelli, A., Fiordelisi, A., Squarci, P., Taffi, L., 1995. Geothermal anomalies and structural features of southern Tuscany. World Geothermal Congress Proceedings, Florence, 12871291.Google Scholar
Bartolini, F., Aquiloni, L., Lori, E., Cianfanelli, S., 2010. Countdown 2010, azioni concrete per ridurre la perdita di biodiversità: il caso del gasteropode endemico della Toscana meridionale Melanopsis etrusca Brot, 1862 (Gastropoda, Prosobranchia). In: Lenzi, A., Leoni, L., Baldacci, C., Brizzi, B., De Santi, C., Domenici, V., Feri, E., Lenzi, P., Montesarchio, E., Piombanti, P.P, Santinelli, M. (Eds.), Codice Armonico, Terzo Congresso di Scienze Naturali, Ambiente toscano, Castiglioncello (LI)1, sezione Scientifica. Edizioni ETS, Pisa, Italy, pp. 63–70.Google Scholar
Bencini, A., Duchi, V., Martini, M., 1977. Geochemistry of thermal springs of Tuscany (Italy). Chemical Geology 19, 229252.CrossRefGoogle Scholar
Binford, L.R., 1987. Data, relativism and archaeological science. Man 22, 391404.CrossRefGoogle Scholar
Bischoff, J., Rosenbauer, R., Tavoso, A., de Lumley, H., 1988. A test of uranium-series dating of fossil tooth enamel: results from Tournal Cave, France. Applied Geochemistry 3, 145151.CrossRefGoogle Scholar
Blanchette, R.A., 2003. Deterioration in Historic and Archaeological Woods from Terrestrial Sites. In: Koestler, R.J., Koestler, V.R., Charola, A.E., Nieto-Fernandez, F.E. (Eds.), Art, Biology and Conservation: Biodeterioration of Works of Art. The Metropolitan Museum of Art, New York, pp. 328347.Google Scholar
Boomer, I., Horne, D.J., Slipper, I.J., 2003. The use of ostracods in palaeoenvironmental studies, or what can you do with an ostracod shell? In: Park, L.E., Smith, A.J. (Eds.), Bridging the Gap: Trends in the Ostracode Biological and Geological sciences. The Paleontological Society Papers 9, Boulder, pp. 153180.Google Scholar
Boschian, G., Sacca, D., 2014. In the elephant, everything is good: carcass use and reuse at Castel di Guido (Italy). Quaternary International 361, 288296.CrossRefGoogle Scholar
Bravetti, L., Pranzini, G., 1987. L’evoluzione quaternaria della pianura di Grosseto (Toscana): prima interpretazione dei dati del sottosuolo. Geografia Fisica e Dinammica Quaternaria 10, 8592.Google Scholar
Censini, G., Costantini, A., 2002. Il sottosuolo della pianura tra Grosseto e Ribolla: ipotesi sul suo assetto strutturale. Le voragini catastrofiche: un nuovo problema per la Toscana. Atti del Convegno di Grosseto del 31 Marzo 2000, Edizioni Regione Toscana, Firenze.Google Scholar
Cianfanelli, S., 2009. I Molluschi della Provincia di Pistoia: le specie da tutelare e quelle da combattere. Quaderni del Padule di Fucecchio 6, 1112.Google Scholar
Cianfanelli, S., 2010. Melanopsis etrusca. The IUCN Red List of Threatened Species. Version 2014.3 (accessed May 18, 2015). http://www.iucnredlist.org.Google Scholar
Cianfanelli, S., Bodon, M., Giusti, F., Manganelli, G., 2010. Belgrandia thermalis. The IUCN Red List of Threatened Species. Version 2014.3 (accessed May 18, 2015). http://www.iucnredlist.org.Google Scholar
Cianfanelli, S., Talenti, E., Calcagno, M., 1991. Le stazioni di Melanopsis dufouri Ferrussac 1823 (Gastropoda, Prososbranchia) in Italia. Quaderni del Museo di Storia Naturale di Livorno 10, 5976.Google Scholar
Corrado, P., Magri, D., 2011. A late Early Pleistocene pollen record from Fontana Ranuccio (central Italy). Journal of Quaternary Science 26, 335344.CrossRefGoogle Scholar
D’Amico, C., Esu, D., Magnatti, M., 2014. Land mollusc palaeocommunity dynamics related to palaeoclimatic changes in the Upper Pleistocene alluvial deposits of Marche Apennines (central Italy). Italian Journal of Geoscience 133, 235248.CrossRefGoogle Scholar
Follieri, M., Magri, D., Sadori, L., 1986. Late Pleistocene Zelkova extinction in Central Italy. New Phytologist 103, 269273.CrossRefGoogle Scholar
Frenzel, P., Schulze, I., Pint, A., 2012. Noding of Cyprideis torosa valves (Ostracoda) – a proxy for salinity? New data from field observations and a long-term microcosm experiment. International Review of Hydrobiology 97, 314329.CrossRefGoogle Scholar
García, N., Arsuaga, J.L., Torres, T., 1997. The carnivore remains from the Sima de los Huesos Middle Pleistocene site (Sierra de Atapuerca, Spain). Journal of Human Evolution 33, 155174.CrossRefGoogle Scholar
Gaudzinski, S., 1996. Karlich-Seeufer: Untersuchungen zu einer Altpaläolithischen Fundstelle in neuwieder Becken (Rheinland-Plalz). Jahrbuch des Römisch-Germanischen Zentralmuseums Mainz 43, 1242.Google Scholar
Ghilardi, M., Desruelles, S., 2009. Geoarchaeology: where human, social and earth sciences meet with technology. Surveys and Perspectives Integrating Environment and Society (S.A.P.I.E.N.S.) 2.2., 19.Google Scholar
Girod, A, Bianchi, I., Mariani, M., 1980. Gasteropodi, 1. Guide per il riconoscimento delle specie animali delle acque interne italiane, AQ/1/44, Vol. 7. Consiglio Nazionale delle Ricerche, Verona.Google Scholar
Giusti, F., Pezzoli, E., 1980. Gasteropodi, 2. Guide per il riconoscimento delle specie animali delle acque interne italiane AQ/1/47, Vol. 8. Consiglio Nazionale delle Ricerche, Verona.Google Scholar
Giusti, F., Manganelli, G., Schembri, P.J., 1995. The non-marine molluscs of the Maltese Islands. Monografie Museo Regionale di Scienze Naturali di Torino 15, 1608.Google Scholar
Griffiths, H.I., Holmes, J.A., 2000. Non-marine ostracods and Quaternary palaeoenvironments. Quaternary Research Association Technical Guide 8, 1179.Google Scholar
Grimm, E.C., 1994. Tilia and tiliagraph Pollen Diagramming Program. Illinois State Museum, Springfield, Illinois.Google Scholar
Grimm, E.C., 2004. Tilia and TG View Version 2.0.2. Illinois State Museum, Research and Collector Center, Springfield, Illinois.Google Scholar
Grün, R., Katzenberger-Apel, O., 1994. An alpha irradiator for ESR dating. Ancient TL 12, 3538.Google Scholar
Grün, R., Schwarcz, H., Chadam, J., 1988. ESR dating of tooth enamel: Coupled correction for U-uptake and U-series disequilibrium. Nuclear Tracks and Radiation Measurements 14, 237241.CrossRefGoogle Scholar
Heinrich, W.-D., 1978. Zur biometrischen Erfassung eines Evolutionstrends bei Arvicola (Rodentia, Mammalia) aus dem Pleistozän Thüringens. Säugetierkundliche Informationen 2, 321.Google Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 19651978.CrossRefGoogle Scholar
Horne, D.J., 2007. A Mutual Temperature Range method for Quaternary palaeoclimatic analysis using European nonmarine Ostracoda. Quaternary Science Reviews 26, 13981415.CrossRefGoogle Scholar
Horne, D.J., Baltanas, A., Paris, G., 1998. Geographical distribution of reproductive modes in living non-marine ostracods. In: Martens, K. (Ed.), Sex and Parthenogenesis: Evolutionary Ecology of Reproductive Modes in Non-marine Ostracods. Backhuys, Leiden, pp. 7799.Google Scholar
Horne, D.J., Curry, B.B., Mesquita-Joanes, F., 2012. Mutual climatic range methods for Quaternary ostracods. Developments in Quaternary Science 17, 6584.CrossRefGoogle Scholar
Kerney, M.P., 1999. Atlas of the land and freshwater molluscs of Britain and Ireland. Harley Books, Cambridge, UK.Google Scholar
Keyser, D., 2005. Histological peculiarities of the nodin process in Cyprideis torosa (Jones) (Crustacea, Ostracoda). Hydrobiologia 538, 95106.CrossRefGoogle Scholar
Lari, M., Di Vincenzo, F., Borsato, A., Ghirotto, S., Micheli, M., Balsamo, C., Collina, C, et al 2015. The Neanderthal in the karst: first dating, morphometric, and paleogenetic data on the fossil skeleton from Altamura (Italy). Journal of Human Evolution 82, 8894.CrossRefGoogle Scholar
Lelièvre, H., Blouin-Demers, G., Bonnet, X., Lourdais, O., 2010a. Thermal benefits of artificial shelters in snakes: A radiotelemetric study of two sympatric colubrids. Journal of Thermal Biology 35, 324331.CrossRefGoogle Scholar
Lelièvre, H., Le Hénanff, M., Blouin-Demers, G., Naulleau, G., Lourdais, O., 2010b. Thermal strategies and energetics in two sympatric colubrid snakes with contrasted exposure. Journal of Comparative Physiology B 180, 415425.CrossRefGoogle ScholarPubMed
Ložek, V., 1964. Quartärmollusken der Tschechoslowakei. Rozpravi Ústřednίho Ústavu. Geologického 31, 1374.Google Scholar
Ludwig, K.R., 2003. Users Manual for Isoplot/Ex Version 3.0: a Geochronological Toolkit for Microsoft Excel. Special Publication 3. Berkeley Geochronology Centre, Berkeley.Google Scholar
Manganelli, G., Bodon, M., Cianfanelli, S., Favilli, L., Giusti, F., 2000. Conoscenza e conservazione dei molluschi non marini italiani: lo stato delle ricerche. Bollettino Malacologico 36, 542.Google Scholar
Marra, F., Ceruleo, P., Jicha, B., Salari, L., 2015. A new age within MIS 7 for the Homo neanderthalensis of Saccopastore in the glacio-eustatically forced sedimentary successions of the Aniene River Valley, Rome. Quaternary Science Reviews 129, 260274.CrossRefGoogle Scholar
Mazza, P.P.A., Martini, F., Sala, B., Magi, M., Colombini, M.P., Giachi, G., Landucci, F., Lemorini, C., Modugno, F., Ribechini, E., 2006. A new Palaeolithic discovery: tar-hafted stone tools in a European mid-Pleistocene bone-bearing bed. Journal of Archaeological Science 33, 13101318.CrossRefGoogle Scholar
Meisch, C.K., 2000. Freshwater ostracoda of western and central Europe. Spektrum Akademischer Verlag, Heidelberg.Google Scholar
Novotný, M., Danko, S., Havaš, P., 2004. Activity cycle and reproductive characteristics of the European pond turtle (Emys orbicularis) in the Tajba National Nature Reserve, Slovakia. In: Fritz, U., Havaš, P. (Eds.), Proceedings of the 3rd International Symposium on Emys orbicularis, Košice 2002. Biologia 59 (Suppl. 14). Slovak Academic Press, Bratislava, pp. 113–121.Google Scholar
Orain, R., Lebreton, V., Ermolli, E.R., Combourieu-Nebout, N., Sémah, A.M., 2013. Carya as marker for tree refuges in southern Italy (Boiano basin) at the Middle Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology 369, 295302.CrossRefGoogle Scholar
Pacher, M, Stuart, A.J., 2008. Extinction chronology and palaeobiology of the cave bear (Ursus spelaeus). Boreas 38, 189206.CrossRefGoogle Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., et al 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429436.CrossRefGoogle Scholar
Piperno, M., Tagliacozzo, A., 2001. The elephant butchery area at the middle Pleistocene site of Notarchirico (Venosa, Basilicata, Italy). In: Cavarretta, G., Gioia, P., Mussi, M., Palombo, M.R. (Eds.), The World of Elephants. Consiglio Nazionale delle Ricerche, Rome, pp. 230236.Google Scholar
Prescott, J., Hutton, J., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiation Measurements 23, 497500.CrossRefGoogle Scholar
Rabinovich, R., Ackermann, O., Aladjem, E., Barkai, R., Biton, R., Milevski, I., Solodenko, N., Marder, O., 2012. Elephants at the Middle Pleistocene Acheulian open-air site of Revadim Quarry, Israel. Quaternary International 276–277, 183197.CrossRefGoogle Scholar
Rapp, G.R. Jr., Hill, C.L., 1998. Geoarchaeology: the Earth-science approach to archaeological interpretation. Yale University Press, New Haven.Google Scholar
Rousseau, D.-D., 1989. Réponses des malacofaunes terrestres quaternaires aux contraintes climatiques en Europe septentrionale. Palaeogeography, Palaeoclimatology, Palaeoecology 69, 113124.CrossRefGoogle Scholar
Sanchez Yustos, P., Diez Martin, F., 2015. Dancing to the rhythms of the Pleistocene? Early Middle Paleolithic population dynamics in NW Iberia (Duero Basin and Cantabrian Region). Quaternary Science Reviews 121, 7588.CrossRefGoogle Scholar
Santucci, E., Marano, F., Cerilli, E., Fiore, I., Lemorini, C., Palombo, M.R., Anzidei, A.P., Bulgarelli, G.M., 2015. Palaeoloxodon exploitation at the middle Pleistocene site of La Polledrara di Cecanibbio (Rome, Italy). Quaternary International 406, 169182.CrossRefGoogle Scholar
Schniewind, A.P., 1990. Physical and mechanical properties of archaeological wood. In: Rowell, R.M., Barbour, R.J. (Eds.), Archaeological wood: properties, chemistry, and preservation. Advances in Chemistry Series 225, American Chemical Society, Washington, DC. pp. 87109.Google Scholar
Schoch, W.H., Bigga, G., Böhner, U., Richter, P., Terberger, T., 2015. New insights on the wooden weapons from the Paeolithic site of Schöningen. Journal of Human Evolution 89, 214225.CrossRefGoogle ScholarPubMed
Scott, B., Bates, M., Bates, R., Conneller, C.H., Pope, M., Shaw, A., Smith, G., 2014. A new view from La Cotte de St. Brelade, Jersey. Antiquity 88, 1329.CrossRefGoogle Scholar
Shao, Q., Bahain, J.-J., Dolo, J.-M., Falguères, C., 2014. Monte Carlo approach to calculate US-ESR ages and their uncertainties. Quaternary Geochronology 22, 99106.CrossRefGoogle Scholar
Stea, B., Tenerini, I., 1996. L’ambiente naturale della pianura grossetana e la sua evoluzione dalla preistoria alla cartografia rinascimentale. In: Citter, C. (Ed.), Grosseto, Roselle e il Prile. Società Archeologica, Mantua, Italy, pp. 1224.Google Scholar
Surovell, T.A., Waguespack, N.M., 2008. How many elephant kills are 14? Clovis mammoth and mastodon kills in context. Quaternary International 191, 8297.CrossRefGoogle Scholar
Villa, P., Soto, E., Santonja, M., Perez-Gonzalez, A., Mora, R., Parcerisas, J., Sesé, C., 2005. New data from Ambrona: closing the hunting versus scavenging debate. Quaternary International 126–128, 223250.CrossRefGoogle Scholar
Wenban-Smith, F.F., Allen, P., Bates, M.R., Parfitt, S.A., Preece, R.C., Stewart, J.R., Turner, C., Whittaker, J.E., 2006. The Clactonian elephant butchery site at Southfleet Road, Ebbsfleet, UK. Journal of Quaternary Science 21, 471483.CrossRefGoogle Scholar
Weber, T., 2000. The Eemian Elephas antiquus finds with artifacts from Lehringen and Grobern: are they really killing sites? Anthropologie et Prehistoire 111, 177185.Google Scholar
Yravedra, J., Domínguez-Rodrigo, M., Santonja, M., Pérez-González, A., Panera, J., Rubio-Jara, S., Baquedano, E., 2010. Cut marks on the Middle Pleistocene elephant carcass of Áridos 2 (Madrid, Spain). Journal of Archaeological Science 37, 24692476.CrossRefGoogle Scholar
Yravedra, J., Panera, J., Rubio-Jara, S., Manzano, I., Expósito, A., Pérez-González, A., Soto, E., López-Recio, M., 2014. Neanderthal and Mammuthus interactions at EDAR Culebro 1 (Madrid, Spain). Journal of Archaeological Science 42, 500508.CrossRefGoogle Scholar
Supplementary material: File

Benvenuti supplementary material

Benvenuti supplementary material 1

Download Benvenuti supplementary material(File)
File 31 KB
9
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Paleoenvironmental context of the early Neanderthals of Poggetti Vecchi for the late middle Pleistocene of Central Italy
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Paleoenvironmental context of the early Neanderthals of Poggetti Vecchi for the late middle Pleistocene of Central Italy
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Paleoenvironmental context of the early Neanderthals of Poggetti Vecchi for the late middle Pleistocene of Central Italy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *