Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-jtg5s Total loading time: 0.282 Render date: 2021-09-22T12:50:46.701Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Paleoceanographic evolution of the SW Svalbard margin (76°N) since 20,000 14C yr BP

Published online by Cambridge University Press:  20 January 2017

Tine L. Rasmussen*
Affiliation:
Department of Geology, University of Tromsø, Dramsveien 201, N-9037 Tromsø, Norway
Erik Thomsen
Affiliation:
Department of Earth Sciences, University of Aarhus, DK-8000 Århus C, Denmark
Marta A. Ślubowska
Affiliation:
Department of Geology, University of Tromsø, Dramsveien 201, N-9037 Tromsø, Norway The University Centre in Svalbard (UNIS), PO Box 156, N-9171 Longyearbyen, Norway
Simon Jessen
Affiliation:
The University Centre in Svalbard (UNIS), PO Box 156, N-9171 Longyearbyen, Norway
Anders Solheim
Affiliation:
Norwegian Geotechnical Institute (NGI), PO Box 3930, Ullevaal Stadion, N-0806 Oslo, Norway
Nalân Koç
Affiliation:
Norwegian Polar Institute, Polar Environmental Centre, N-9296 Tromsø, Norway
*Corresponding
Corresponding author. Fax: +47 7764 5600. E-mail address: tine.rasmussen@ig.uit.no (T.L. Rasmussen).

Abstract

Two cores from the southwestern shelf and slope of Storfjorden, Svalbard, taken at 389 m and 1485 m water depth have been analyzed for benthic and planktic foraminifera, oxygen isotopes, and ice-rafted debris. The results show that over the last 20,000 yr, Atlantic water has been continuously present on the southwestern Svalbard shelf. However, from 15,000 to 10,000 14C yr BP, comprising the Heinrich event H1 interval, the Bølling–Allerød interstades and the Younger Dryas stade, it flowed as a subsurface water mass below a layer of polar surface water. In the benthic environment, the shift to interglacial conditions occurred at 10,000 14C yr BP. Due to the presence of a thin upper layer of polar water, surface conditions remained cold until ca. 9000 14C yr BP, when the warm Atlantic water finally appeared at the surface. Neither extensive sea ice cover nor large inputs of meltwater stopped the inflow of Atlantic water. Its warm core was merely submerged below the cold polar surface water.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagaard, K., and Carmack, E.C. The role of sea ice and other freshwater in the Arctic circulation. Journal of Geophysical Research 94, (1989). 14,48514,498.CrossRefGoogle Scholar
Aagaard, K., Swift, J.H., and Carmack, E.C. Thermohaline circulation in the Arctic Mediterranean Seas. Journal of Geophysical Research 90, C5 (1985). 48334846.CrossRefGoogle Scholar
Andersen, E.S., Dokken, T.M., Elverhøi, A., Solheim, A., and Fossen, I. Late Quaternary sedimentation and gladial history of the western Svalbard continental margin. Marine Geology 133, (1996). 123156.CrossRefGoogle Scholar
Andersen, C., Koç, N., Jennings, A., and Andrews, J.T. Nonuniform response of the major surface currents in the Nordic seas to insolation forcing: implications for the Holocene climate variability. Paleoceanography 19, (2004). 116. PA2003, doi:http://dx.doi.org/10.1029/2002PA000873CrossRefGoogle Scholar
Bauch, H.A., Erlenkeuser, H., Spielhagen, R.F., Struck, U., Matthiessen, J., Thiede, J., and Heinemeier, J. A multiproxy reconstruction of the evolution of deep and surface waters in the subarctic Nordic seas over the last 30,000 yr. Quaternary Science Reviews 20, (2001). 659678.CrossRefGoogle Scholar
, A.W.H., and Tolderlund, D.S. Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans. Funnell, B.M., and Riedel, W.R. The Micropaleontology of the Oceans. (1971). Cambridge University Press, 105149.Google Scholar
Belanger, B.E., and Streeter, S.S. Distribution and ecology of benthic foraminifera in the Norwegian-Greenland Sea. Marine Micropaleontology 5, (1980). 401428.CrossRefGoogle Scholar
Berger, W.H. Deep-sea carbonates: Pleistocene dissolution cycles. Journal of Foraminiferal Research 3, (1973). 187195.CrossRefGoogle Scholar
Birgel, D., and Hass, H.C. Oceanic and atmospheric variations during the last deglaciation in the Fram Strait (Arctic Ocean): a coupled high-resolution organic-geochemical and sedimentological study. Quaternary Science Reviews 23, (2004). 2947.CrossRefGoogle Scholar
Björck, S., Kromer, B., Johnsen, S., Bennike, O., Hammarlund, D., Lemdahl, G., Possnert, G., Rasmussen, T.L., Wohlfarth, B., Hammer, C.U., and Spurk, M. Synchronized terrestrial-atmospheric deglacial records around the North Atlantic. Science 274, (1996). 11551160.CrossRefGoogle ScholarPubMed
Boltovskoy, E., and Wright, R. Recent foraminifera. Dr. Junk. The Hague (1976). 515 Google Scholar
Boltovskoy, E., Boltovskoy, D., Correa, N., and Brandini, F. Planktic foraminifera from the southwestern Atlantic (30°–60°S): species-specific patterns in the upper 50 m. Marine Micropaleontology 28, (1996). 5372.CrossRefGoogle Scholar
Bond, G., Broecker, W.S., Johnsen, S.J., McManus, J., Labeyrie, L., Jouzel, J., and Bonani, G. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, (1993). 143147.CrossRefGoogle Scholar
Bondevik, S., Mangerud, J., Ronnert, L., and Salvigsen, O. Post-glacial sea-level history of Edgeøya and Barentsøya, eastern Svalbard. Polar Research 14, (1995). 153180.Google Scholar
Boyd, T.J., and D'Asaro, E.A. Cooling of the West Spitsbergen Current: wintertime observations west of Svalbard. Journal of Geophysical Research 99, C11 (1994). 22,59722,618.CrossRefGoogle Scholar
Carstens, J., Hebbeln, D., and Wefer, G. Distribution of planktic foraminifera at the ice margin in the Arctic (Fram Strait). Marine Micropaleontology 29, (1997). 257269.CrossRefGoogle Scholar
Conan, S.M.-H., Ivanova, E.M., and Brummer, G.-J.A. Quantifying carbonate dissolution and calibration of foraminiferal dissolution indices in the Somali basin. Marine Geology 182, (2002). 325349.CrossRefGoogle Scholar
Dokken, T.M., and Hald, M. Rapid climatic shifts during isotope stages 2–4 in the polar North Atlantic. Geology 24, (1996). 599602.2.3.CO;2>CrossRefGoogle Scholar
Dowdeswell, J.A., Kenyon, N.H., Elverhøi, A., Laberg, J.S., Hollender, F.-J., Mienert, J., and Siegert, M.J. Large-scale sedimentation on the glacier-influenced Polar North Atlantic margins: long-range side-scan sonar evidence. Geophysical Research Letters 23, (1996). 35353538.CrossRefGoogle Scholar
Duplessy, J.-C., Moyes, J., and Pujol, C. Deep water formation in the North Atlantic Ocean during the last ice age. Nature 286, (1980). 479482.CrossRefGoogle Scholar
Duplessy, J.-C., Ivanova, E., Murdmaa, I., Paterne, M., and Labeyrie, L. Holocene paleoceanography of the Northern Barents Sea and variations of the northward heat transport by the Atlantic Ocean. Boreas 30, (2001). 216.CrossRefGoogle Scholar
Ehrmann, W.U., and Thiede, J. History of mesozoic and cenozoic sediment fluxes to the North Atlantic Ocean. Contributions to Sedimentology 15, (1985). 1109.Google Scholar
Eiríksson, J., Knudsen, K.L., Haflidason, H., and Henriksen, P. Late-glacial and Holocene paleoceanography of the North Icelandic shelf. Journal of Quaternary Science 15, (2000). 2342.3.0.CO;2-8>CrossRefGoogle Scholar
Elverhøi, A., Andersen, E.S., Dokken, T., Hebbeln, D., Spielhagen, R., Svendsen, J.I., Sørflaten, M., Romes, A., Hald, M., and Forsberg, C.F. The growth and decay of the Late Weichselian ice sheet in western Svalbard and adjacent areas based on provenance studies of marine sediments. Quaternary Research 44, (1995). 303316.CrossRefGoogle Scholar
Fairbanks, R.G. A 17,000-years glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, (1989). 637742.CrossRefGoogle Scholar
Ganopolski, A., and Rahmstorf, S. Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, (2001). 153158.CrossRefGoogle Scholar
Gooday, A.J. Benthic Foraminifera (Protista) as tools in deep-water palaeoceanography: environmental influences on faunal characteristics. Southward, A.J., Tyler, P.A., Young, C.M., Fuiman, L.A. Advances in Marine Biology vol. 46, (2003). Academic Press, Amsterdam. 190.CrossRefGoogle Scholar
Haake, F.-W., and Pflaumann, U. Late Pleistocene stratigraphy on the Vøring Plateau, Norwegian Sea. Boreas 18, (1989). 343356.CrossRefGoogle Scholar
Haarpainter, J., Gascard, J.C., and Haugan, P.M. Ice production and brine formation in Storfjorden, Svalbard. Journal of Geophysical Research 106, C7 (2001). 14,00114,013.CrossRefGoogle Scholar
Haarpainter, J., O'Dwyer, J., Gascard, J.C., Haugan, P.M., Schauer, U., and Østerhus, S. Seasonal transformation of water masses, circulation and brine formation observed in Storfjorden, Svalbard. Annals of Glaciology 33, (2001). 437443.CrossRefGoogle Scholar
Hald, M., and Aspeli, R. Rapid climatic shifts of the northern Norwegian Sea during the last deglaciation and the Holocene. Boreas 26, (1997). 1528.CrossRefGoogle Scholar
Hald, M., and Hagen, S. Early Preboreal cooling in the Nordic seas region triggered by meltwater. Geology 26, (1998). 615618.2.3.CO;2>CrossRefGoogle Scholar
Hald, M., and Korsun, S. Distribution of modern benthic foraminifera from fjords of Svalbard, European Arctic. Journal of Foraminiferal Research 27, (1997). 101122.CrossRefGoogle Scholar
Hald, M., and Steinsund, P.I. Distribution of surface sediment benthic foraminifera in the southwestern Barents Sea. Journal of Foraminiferal Research 22, (1992). 347362.CrossRefGoogle Scholar
Hald, M., and Steinsund, P.I. Benthic foraminifera and carbonate dissolution in the surface sediments of the Barents and Kara Seas. Berichte zur Polarforschung 212, (1996). 285307.Google Scholar
Hald, M., Dokken, T., and Hagen, S. Paleoceanography of the European Arctic margin during the last glaciation. Geological Society of London Special Publication 111, (1996). 275287.CrossRefGoogle Scholar
Hald, M., Kolstad, V., Polyak, L., Forman, S.L., Herlihy, F.A., Ivanov, G., and Nescheretov, A. Late-glacial and Holocene paleoceanography and sedimentary environments in the St. Anna Trough, Eurasian Arctic Ocean margin. Palaeogeography, Palaeoclimatology, Palaeoecology 146, (1999). 229249.CrossRefGoogle Scholar
Hald, M., Dokken, T., and Mikalsen, G. Abrupt climatic change during the last interglacial-glacial cycle in the polar North Atlantic. Marine Geology 176, (2001). 121137.CrossRefGoogle Scholar
Hald, M., Ebbesen, H., Forwick, M., Godtliebsen, F., Khomenko, L., Korsun, S., Olsen, L.R., and Vorren, T.O. Holocene paleoceanography and glacial history of the West Spitsbergen area, Euro-Arctic margin. Quaternary Science Reviews 23, (2004). 20752088.CrossRefGoogle Scholar
Haugan, P.M. Structure and heat content of the West Spitsbergen Current. Polar Research 18, (1999). 183188.CrossRefGoogle Scholar
Hebbeln, D., Dokken, T., Andersen, E.S., Hald, M., and Elverhøi, A. Moisture supply for northern ice-sheet growth during the last glacial maximum. Nature 370, (1994). 357360.CrossRefGoogle Scholar
Heinrich, H. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quaternary Research 29, (1988). 142152.CrossRefGoogle Scholar
Hjelstuen, B.O., Elverhøi, A., and Faleide, J.I. Cenozoic erosion and sediment yield in the drainage area of the Storfjorden Fan. Global and Planetary Change 12, (1996). 95117.CrossRefGoogle Scholar
Jansen, E., and Erlenkeuser, H. Ocean circulation in the Norwegian Sea during the last deglaciation: isotopic evidence. Palaeogeography, Palaeoclimatology, Palaeoecology 49, (1985). 189206.CrossRefGoogle Scholar
Jennings, A.E., and Weiner, N.J. Environmental change in eastern Greenland during the last 1300 years: evidence from foraminifera and lithofacies in Nansen Fjord, 68 degrees N. The Holocene 6, (1996). 179191.CrossRefGoogle Scholar
Jennings, A.E., Weiner, N.J., Helgadottir, G., and Andrews, J.T. Modern Foraminiferal faunas of the southwestern to northern Iceland shelf: oceanographic and environmental controls. Journal of Foraminiferal Research 34, (2004). 180207.CrossRefGoogle Scholar
Jennings, A.E., Hald, M., Smith, M., and Andrews, J.T. Freshwater forcing from the Greenland Ice Sheet during the Younger Dryas: evidence from southeastern Greenland shelf cores. Quaternary Science Reviews 25, (2006). 282298.CrossRefGoogle Scholar
Johannessen, T., Jansen, E., Flatøy, A., and Ravelo, A.C. The relationship between surface water masses, oceanographic fronts and paleoclimatic proxies in surface sediments of the Greenland, Iceland, Norwegian Seas. NATO ASI Series (1994). 6186.Google Scholar
Johnsen, S.J., Clausen, H.B., Dansgaard, W., Fuhrer, K., Gundestrup, N., Hammer, C.U., Iversen, P., Jouzel, J., Stauffer, B., and Steffensen, J.P. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, (1992). 311313.CrossRefGoogle Scholar
Johnsen, S.J., Dahl-Jensen, D., Gundestrup, N., Steffensen, J.P., Clausen, H.B., Miller, H., Masson-Delmotte, V., Sveinbjörnsdóttir, A.E., and White, J. Oxygen isotope and paleotemperature records from six Greenland ice-core stations: camp century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. Journal of Quaternary Science 16, (2001). 299307.CrossRefGoogle Scholar
Kemle-von Mücke, S., and Hemleben, C. Foraminifera. Boltovskoy, D. South Atlantic Zooplankton. (1999). Backhuys Publishers, Leiden, The Netherlands. 4373.Google Scholar
Klitgaard Kristensen, D., Sejrup, H.P., and Haflidason, H. The last 18 kyr fluctuations in Norwegian Sea surface conditions and implications for the magnitude of climatic change: evidence from the North Sea. Paleoceanography 16, (2001). 455467.CrossRefGoogle Scholar
Knies, J., Vogt, C., and Stein, R. Late Quaternary growth and decay of the Svalbard/Barents Sea ice sheet and paleoceanographic evolution in the adjacent Arctic Ocean. Geo-Marine Letters 18, (1999). 195202.CrossRefGoogle Scholar
Koç, N., and Jansen, E. A high-resolution diatom record of the last deglaciation from the SE Norwegian Sea: documentation of rapid climate changes. Paleoceanography 7, (1992). 499520.Google Scholar
Koç, N., and Jansen, E. Holocene climate evolution of the North Atlantic Ocean and the Nordic seas-a synthesis of new results. Wefer, G., Berger, W., Behre, K.-E., and Jansen, E. Climate and History in the North Atlantic Realm. (2002). Springer-Verlag, Berlin. 165173. Heidelberg Google Scholar
Koç, N., Jansen, E., and Haflidason, H. Paleoceanographic reconstructions of surface ocean conditions in the Greenland, Iceland and Norwegian Seas through the last 14 ka based on diatoms. Quaternary Science Reviews 12, (1993). 115140.CrossRefGoogle Scholar
Koç, N., Jansen, E., Hald, M., and Labeyrie, L. Late-glacial-Holocene sea surface temperatures and gradients between the North Atlantic and the Norwegian Sea: implications for the Nordic heat pump. Geological Society of London Special Publication 111, (1996). 177185.CrossRefGoogle Scholar
Koç, N., Klitgaard Kristensen, D., Hasle, K., Forsberg, C.F., and Solheim, A. Late glacial paleoceanography of Hinlopen Strait, northern Svalbard. Polar Research 21, (2002). 307314.CrossRefGoogle Scholar
Korsun, S., and Hald, M. Modern benthic foraminifera off Novaya Zemlya tidewater glaciers, Russian Arctic. Arctic and Alpine Research 30, (1998). 6177.CrossRefGoogle Scholar
Korsun, S., and Hald, M. Seasonal dynamics of benthic foraminifera in a glacially fed fjord of Svalbard, European Arctic. Journal of Foraminiferal Research 30, (2000). 251271.CrossRefGoogle Scholar
Kuijpers, A., Nielsen, T., Akhmetzhanov, A., de Haas, H., Kenyon, N.H., and van Weering, T.C.E. Late Quaternary slope instability on the Faeroe margin: mass flow features and timing of events. Geo-Marine Letters 20, (2001). 149159.Google Scholar
Laberg, J.S., and Vorren, T.O. Late Weichselian debris flow deposits on the Bear Island Trough Mouth Fan. Marine Geology 127, (1995). 4572.CrossRefGoogle Scholar
Laberg, J.S., and Vorren, T.O. The glacier fed fan at the mouth of Storfjorden Trough, western Barents Sea: a comparative study. Geologisches Rundschau 85, (1996). 338349.CrossRefGoogle Scholar
Landvik, J.Y., Bondevik, S., Elverhøi, A., Fjeldskaar, W., Mangerud, J., Salvigsen, O., Siegert, M.J., Svendsen, J.I., and Vorren, T.O. The last glacial maximum of Svalbard and the Barents Sea area: ice sheet extent and configuration. Quaternary Science Reviews 17, (1998). 4375.CrossRefGoogle Scholar
Lassen, S.L., Kuijpers, A., Kunzendorf, H., Lindgren, H., Heinemeier, J., Jansen, E., and Knudsen, K.L. Intermediate water signal leads surface water response during northeast Atlantic deglaciation. Global and Planetary Change 32, (2002). 111125.CrossRefGoogle Scholar
Linke, P., and Lutze, G.F. Microhabitat preferences of benthic foraminifera-a static concept or a dynamic adaptation to optimize food acquisition?. Marine Micropaleontology 20, (1993). 215234.CrossRefGoogle Scholar
Lloyd, J., Kroon, D., Laban, C., and Boulton, G. Deglaciation history and paleoceanography of the western Spitsbergen margin since the last glacial maximum. Geological Society of London Special Publication 111, (1996). 289301.CrossRefGoogle Scholar
Loeng, H. Features of the physical oceanographic conditions of the Barents Sea. Polar Research 10, (1991). 518.CrossRefGoogle Scholar
Lubinski, D.J., Korsun, S., Polyak, L., Forman, S.L., Lehman, S.J., Herlihy, F., and Miller, G.H. The last deglaciation of the Franz Victoria Trough, northern Barents Sea. Boreas 25, (1996). 89100.CrossRefGoogle Scholar
Lubinski, D.J., Polyak, L., and Forman, S.L. Freshwater and Atlantic water inflows to the deep northern Barents and Kara seas since ca. 13 14C ka: foraminifera and stable isotopes. Quaternary Science Reviews 20, (2001). 18511879.CrossRefGoogle Scholar
Mackensen, A., and Hald, M. Cassidulina teretis Tappan and C. laevigata d'Orbigny: their modern and Late Quaternary distribution in northern seas. Journal of Foraminiferal Research 18, (1988). 1624.CrossRefGoogle Scholar
Mackensen, A., Sejrup, H.P., and Jansen, E. The distribution of living benthic foraminifera on the continental slope and rise off southwest Norway. Marine Micropaleontology 9, (1985). 275306.CrossRefGoogle Scholar
Mangerud, J., and Gulliksen, S. Apparent radiocarbon ages of recent marine shells from Norway, Spitbergen, and Arctic Canada. Quaternary Research 5, (1975). 263273.CrossRefGoogle Scholar
Mangerud, J., Bolstad, M., Elgersma, A., Helliksen, D., Landvik, J.Y., Lønne, L., Lycke, A.K., Salvigsen, O., Sandahl, T., and Svendsen, J.I. The last glacial maximum on Spitsbergen, Svalbard. Quaternary Research 38, (1992). 131.CrossRefGoogle Scholar
Nørgaard-Pedersen, N., Spielhagen, R.F., Erlenkeuser, H., Grootes, P.M., Heinemeier, J., and Knies, J. Arctic Ocean during the last glacial maximum: Atlantic and polar domains of surface water mass distribution and ice cover. Paleoceanography 18, (2003). 1063 doi:http://dx.doi.org/10.1029/2002PA000781CrossRefGoogle Scholar
Ostermann, D.R., and Curry, W.D. Calibration of stable isotope data: an enriched δ18O standard used for source gas mixing detection and correction. Paleoceanography 15, (2000). 353360.CrossRefGoogle Scholar
Pfirman, S.L., Bauch, D., and Gammelsrød, T. The Northern Barents Sea: water mass distribution and modification. Johannessen, O.M., Muench, R.D., and Overland, J.E. The Polar Oceans and Their Role in Shaping the Global Environment. AGU Geophysical Monograph Series vol. 85, (1994). 7794.Google Scholar
Pflaumann, U., Sarnthein, M., Chapman, M., d'Abreu, L., Funnell, B., Huels, M., Kiefer, T., Maslin, M., Schulz, H., Swallow, J., van Kreveld, S., Vautravers, M., Vogelsang, E., and Weinelt, M. Glacial North Atlantic: sea-surface conditions reconstructed by GLAMAP 2000. Paleoceanography 18, 1065 (2003). 128. doi:http://dx.doi.org/10.1029/2002PA000774CrossRefGoogle Scholar
Polyak, L., and Mikhailov, V. Post-glacial environments of the southeastern Barents Sea: foraminiferal evidence. Geological Society of London Special Publication 111, (1996). 323337.CrossRefGoogle Scholar
Polyak, L., and Solheim, A. Late- and postglacial environments in the northern Barents Sea west of Franz Josef Land. Polar Research 13, (1994). 197207.CrossRefGoogle Scholar
Polyak, L., Lehman, S.J., Gataullin, V., and Jull, A.J.T. Two-step deglaciation of the southeastern Barents Sea. Geology 23, (1995). 567571.2.3.CO;2>CrossRefGoogle Scholar
Poole, D.A.R., (1994). Neogene and Quaternary paleoenvironments on the northern Norwegian shelf.. Unpublished Phd Thesis, University of Tromsø, Norway., 182.Google Scholar
Quadfasel, D., Rudels, B., and Kurtz, K. Outflow of dense water from a Svalbard fjord into the Fram Strait. Deep-Sea Research A35, (1988). 11431150.CrossRefGoogle Scholar
Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 419, (2002). 207214.CrossRefGoogle ScholarPubMed
Rasmussen, T.L. Systematic paleontology and ecology of benthic foraminifera from the Plio-Pleistocene Kallithea Bay section, Rhodos Greece. Thomsen, E. Lagoon to Deep Water Foraminifera and Ostracods from the Plio-Pleistocene Kallithea Bay Section, Rhodes, Greece 39, (2005). Cushman Foundation Special Publication, 53157.Google Scholar
Rasmussen, T.L., and Thomsen, E. The role of the North Atlantic Drift in the millennial timescale glacial climate fluctuations. Palaeogeography, Palaeoclimatology, Palaeoecology 210, (2004). 101116.CrossRefGoogle Scholar
Rasmussen, T.L., Thomsen, E., van Weering, T.C.E., and Labeyrie, L. Rapid changes in surface and deep water conditions at the Faeroe Margin during the last 58,000 years. Paleoceanography 11, (1996). 757771.CrossRefGoogle Scholar
Rasmussen, T.L., Thomsen, E., Labeyrie, L., and van Weering, T.C.E. Circulation changes in the Faeroe-Shetland Channel correlating with cold events during the last glacial period (58–10 ka). Geology 24, (1996). 937940.2.3.CO;2>CrossRefGoogle Scholar
Rasmussen, T.L., Bäckström, D., Heinemeier, J., Klitgaard Kristensen, D., Knutz, P.C., Kuijpers, A., Lassen, S., Thomsen, E., Troelstra, S.R., and van Weering, T.C.E. The Faeroe-Shetland Gateway: late Quaternary water mass exchange between the Nordic seas and the northeastern Atlantic. Marine Geology 188, (2002). 165192.CrossRefGoogle Scholar
Rasmussen, T.L., Thomsen, E., Troelstra, S.R., Kuijpers, A., and Prins, M. Millennial-scale glacial variability versus Holocene stability: changes in planktic and benthic foraminifera faunas and ocean circulation in the North Atlantic during the last 60,000 years. Marine Micropaleontology 47, (2003). 143176.CrossRefGoogle Scholar
Rasmussen, T.L., Oppo, D., Thomsen, E., and Lehman, S.J. Deep-sea records from the SE Labrador Sea: timing of ocean circulation changes and ice rafting events during the last 150,000 years. Paleoceanography 18, (2003). 115. doi:http://dx.doi.org/10.1029/2002PA000764CrossRefGoogle Scholar
Rudels, B., Friedrich, H.J., and Quadfasel, D. The Arctic circumpolar boundary current. Deep-Sea Research II 46, (1999). 10231062.CrossRefGoogle Scholar
Saloranta, T.M., and Haugan, P.M. Northward cooling and freshening of the warm core of the West Spitsbergen Current. Polar Research 23, (2004). 7988.CrossRefGoogle Scholar
Saloranta, T.M., and Svendsen, H. Across the Arctic Front west of Spitsbergen: high-resolution CTD sections from 1998–2000. Polar Research 20, (2001). 177184.Google Scholar
Salvigsen, O., Forman, S.L., and Miller, G.H. Thermophilous molluscs on Svalbard during the Holocene and their paleoclimatic implications. Polar Research 11, (1992). 110.CrossRefGoogle Scholar
Sarnthein, M., Pflaumann, U., and Weinelt, M. Past extent of sea ice in the northern North Atlantic inferred from foraminiferal paleotemperature estimates. Paleoceanography 18, (2003). 1047 doi:http://dx.doi.org/10.1029/2002PA000771CrossRefGoogle Scholar
Sarnthein, M., van Kreveld, S., Erlenkeuser, H., Grootes, P.M., Kucera, M., Pflaumann, U., and Schulz, M. Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75°N. Boreas 32, (2003). 447461.CrossRefGoogle Scholar
Schauer, U. The release of brine-enriched shelf water from Storfjord into the Norwegian Sea. Journal of Geophysical Research 100, C8 (1995). 16,01516,028.CrossRefGoogle Scholar
Schauer, U., and Fahrbach, E. A dense bottom water plume in the western Barents Sea: downstream modification and interannual variability. Deep-Sea Research I 46, (1999). 20952108.CrossRefGoogle Scholar
Sejrup, H.-P., Fjæran, T., Hald, M., Beck, L., Hagen, J., Miljeteig, I., Morvik, I., and Norvik, O. Benthonic foraminifera in surface samples from the Norwegian continental margin between 62°N and 65°N. Journal of Foraminiferal Research 11, (1981). 277295.CrossRefGoogle Scholar
Sejrup, H.P., Birks, H.J.B., Klitgaard Kristensen, D., and Madsen, H. Benthonic foraminiferal distributions and quantitative transfer functions for the northwest European continental margin. Marine Micropaleontology 53, (2004). 197226.CrossRefGoogle Scholar
Simstich, J., Sarnthein, M., and Erlenkeuser, H. Paired δ18O signals of N. pachyderma (s) and T. quinqueloba show thermal stratification structure in the Nordic seas. Marine Micropaleontology 48, (2003). 107125.CrossRefGoogle Scholar
Skogseth, R., Haugan, P.M., and Haarpaintner, J. Ice and brine production in Storfjorden from four winters of satellite and in situ observations and modelling. Journal of Geophysical Research 109, C10008 (2004). 115. doi:http://dx.doi.org/10.1029/2004JC002384CrossRefGoogle Scholar
Skogseth, R., Haugan, P.M., and Jakobsson, M. Watermass transformations in Storfjorden. Continental Shelf Research 25, (2005). 667695.CrossRefGoogle Scholar
Ślubowska, M.A., Koç, N., Rasmussen, T.L., and Klitgaard Kristensen, D. Changes in the flow of Atlantic water into the Arctic Ocean since the last deglaciation: evidence from the northern Svalbard continental margin, 80°N. Paleoceanography 20, (2005). 115. doi:http://dx.doi.org/10.1029/2005PA001141CrossRefGoogle Scholar
Struck, U. Paleoecology of benthic foraminifera in the Norwegian-Greenland Sea during the past 500 ka. Hass, H.C., Kaminski, M.A. Contributions to the Micropaleontology and Paleoceanography of the Northern North Atlantic vol. 5, (1997). Grzybowski Foundation Special Publication, 5182.Google Scholar
Svendsen, J.I., Elverhøi, A., and Mangerud, J. The retreat of the Barents Sea Ice Sheet on the western Svalbard margin. Boreas 25, (1996). 244256.CrossRefGoogle Scholar
Svendsen, J.I., Gataullin, V., Mangerud, J., and Polyak, L. The glacial history of the Barents and Kara Sea region. Ehlers, J., Gibbard, P.L. Quaternary Glaciations—Extent and Chronology vol. 1, (2004). Elsevier, Amsterdam. 369378. Europe CrossRefGoogle Scholar
Thomas, E., Booth, L., Maslin, M., and Shackleton, N.J. Northeastern Atlantic benthic foraminifera during the last 45,000 years: changes in productivity seen from the bottom up. Paleoceanography 10, (1995). 545562.CrossRefGoogle Scholar
Van Kreveld, S., Sarnthein, M., Erlenkeuser, H., Grootes, P., Jung, S., Nadeau, M.J., Pflaumann, U., and Voelker, A. Potential links between surging ice sheets, circulation changes, and the Dansgaard–Oeschger cycles in the Irminger Sea, 60–18 kyr. Paleoceanography 15, (2000). 425442.CrossRefGoogle Scholar
Vogt, C., Knies, J., Spielhagen, R.F., and Stein, R. Detailed mineralogical evidence for two nearly identical glacial/interglacial cycles and Atlantic water advection to the Arctic Ocean during the last 90,000 years. Global and Planetary Change 31, (2001). 2324.CrossRefGoogle Scholar
Vorren, T.O., and Kristoffersen, Y. Late Quaternary glaciation in the southwestern Barents Sea. Boreas 15, (1986). 5160.CrossRefGoogle Scholar
Vorren, T.O., and Laberg, J.S. Trough Mouth Fans-paleoclimate and ice sheet monitors. Quaternary Science Reviews 16, (1997). 865881.CrossRefGoogle Scholar
Weinelt, M., Sarnthein, M., Pflaumann, U., Schulz, H., Jung, S., and Erlenkeuser, H. Ice-free Nordic Seas during the last glacial maximum? Potential sites of deepwater formation. Paleoclimates 1, (1996). 283309.Google Scholar
Wollenburg, J.E., and Mackensen, A. Living benthic foraminifers from the central Arctic Ocean: faunal composition, standing stock and diversity. Marine Micropaleontology 34, (1998). 153185.CrossRefGoogle Scholar
Wollenburg, J.E., Knies, J., and Mackensen, A. High-resolution paleoproductivity fluctuations during the last 24 kyr as indicated by benthic foraminifera in the marginal Arctic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 204, (2004). 209238.CrossRefGoogle Scholar
163
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Paleoceanographic evolution of the SW Svalbard margin (76°N) since 20,000 14C yr BP
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Paleoceanographic evolution of the SW Svalbard margin (76°N) since 20,000 14C yr BP
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Paleoceanographic evolution of the SW Svalbard margin (76°N) since 20,000 14C yr BP
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *