Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-ns2hh Total loading time: 0.352 Render date: 2022-09-26T14:21:08.697Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Oxygen-Isotope Analyses and Pleistocene Ice Volumes1

Published online by Cambridge University Press:  20 January 2017

Alan C. Mix
Affiliation:
Lamont-Doherty Geological Observatory, Palisades, New York 10964 USA, and Department of Geological Sciences, Columbia University, New York, New York 10027
William F. Ruddiman
Affiliation:
Lamont-Doherty Geological Observatory, Palisades, New York 10964 USA, and Department of Geological Sciences, Columbia University, New York, New York 10027

Abstract

The oxygen-isotope record from fossil foraminifera in deep-sea sediments is commonly used as a proxy for global ice volume. The linkage between δ18O and ice volume, however, is probably nonlinear. We have developed a simple numerical model of the isotopic response of the oceans to ice-volume change. The major features it simulates are (1) the changing mean isotopic composition of snow as a function of ice volume (colder snow temperatures forced by climate change and higher-elevation accumulation areas imply more negative mean δ18O); (2) the nonequilibrium isotopic composition of ice sheets (the past history of an ice sheet is integrated into its mean isotopic composition, which introduces a lag of isotopic “ice volume,” i.e., the measured δ18O record, scaled to ice-volume units, behind true ice volume); (3) selective preservation of isotopically more negative (colder, higher-latitude) ice (this geographic effect can selectively amplify or dampen the isotopic response to the ice-volume signal). We illustrate the response of our model to simple hypothetical ice-volume transitions of ice growth and ice decay. Sensitivity tests are illustrated for all model parameters. The results suggest that oxygen-isotope records reproduce the general patterns of ice-volume change fairly accurately. The foraminiferal isotope record, however, may misrepresent the true amplitude of the ice-volume signal and lag true ice volume by 1000 to 3000 yr.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Lamont-Doherty Geological Observatory Contribution No. 3517.

References

Andrews, J.T., Mahaffy, M.A. (1976). Growth rates of the Laurentide Ice Sheet and sea-level lowering (with emphasis on the 115,000 B.P. sea-level low) Quaternary Research 6, 167183 CrossRefGoogle Scholar
Barkov, N.I., Gordienko, F.G., Korotkevich, E.S., Kotlyakov, V.M. (1977). The isotopic analysis of ice cores from Vostok Station (Antarctica), to the depth of 950 meters Isotopes and Impurities in Snow and Ice. Proceedings of the Grenoble Symposium August, 1975 I.A.H.S. Publication No. 118 382387 Google Scholar
Berger, A.L. (1978). Long-term variations of caloric insolation resulting from the earth's orbital elements Quaternary Research 9, 139167 CrossRefGoogle Scholar
Birchfield, G.E., Weertman, J. (1978). A note on the spectral response of a model continental ice sheet Journal of Geophysical Research 83, No. C-8 41234125 CrossRefGoogle Scholar
Birchfield, G.E., Weertman, J., Lunde, A.T. (1981). A paleoclimate model of northern hemisphere ice sheets Quaternary Research 15, 126142 CrossRefGoogle Scholar
Bloom, A.L., Broecker, W.S., Chappell, J.M.A., Matthews, R.K., Mesolella, K.J. (1974). Quaternary sea level fluctuations on a tectonic coast: New 230Th/234U dates from the Huon Peninsula, New Guinea Quaternary Research 4, 185205 CrossRefGoogle Scholar
Boulton, G.S. (1979). A model of Weichselian glacier variation in the North Atlantic region Boreas 8, 373395 CrossRefGoogle Scholar
Brinkman, W.A.R., Barry, R.G. (1972). Palaeoclimatological aspects of the synoptic climatology of Keewatin, Northwest Territories, Canada Palaeogeography, Palaeoclimatology, and Palaeoecology 11, 7791 CrossRefGoogle Scholar
Broecker, W.S. (1975). Floating glacial ice caps in the Arctic Ocean Science 188, 11161118 CrossRefGoogle ScholarPubMed
Broecker, W.S. (1978). The cause of glacial to interglacial climatic change Evolution of Planetary Atmospheres and Climatology of the Earth Centre National d'Etudes Spatales Nice, France 165177 Google Scholar
Buchardt, B., Fritz, P. (1980). Environmental isotopes as environmental and climatological indicators Fritz, P., Fontes, J.Ch., Handbook of Environmental Isotope Geochemistry Vol. 1, Elsevier Amsterdam 473504 “The Terrestrial Environment, A”Google Scholar
Budd, W.F. (1981). The importance of ice sheets in long term changes of climate and sea level Sea Level, Ice, and Climatic Change, Proceedings of the Canberra Symposium December, 1979 I.A.H.S. Publication No. 131 441471 Google Scholar
Budd, W.F., Smith, I.N. (1981). The growth and retreat of ice sheets in response to orbital radiation changes Sea Level, Ice, and Climatic Change. Proceedings of the Canberra Symposium December, 1979 I.A.H.S. Publication No. 131 369409 Google Scholar
Calder, N. (1974). Arithmetic of ice ages Nature (London) 252, 216218 CrossRefGoogle Scholar
Chappell, J. (1974). Relationships between sea levels, 18O variations, and orbital perturbations, during the past 250,000 years Nature (London) 252, 199202 CrossRefGoogle Scholar
Clausen, H.B., Dansgaard, W., Nielsen, J.O., Clough, J.W. (1979). Surface accumulation on Ross Ice Shelf Antarctic Journal of the United States 14, 5 6872 Google Scholar
Craig, H. (1965). The measurement of oxygen isotope paleotemperatures Tongiorgi, E., Stable Isotopes in Oceanic Studies and Paleotemperatures. Third SPOLETO Conference on Nuclear Geology Consiglio Nazionale della Ricerche, Laboratorio di Geologia Nucleare Pisa 161182 Google Scholar
Curray, J.R. (1965). Late Quaternary history, continental shelves of the United States Wright, H.E., Frey, D.C., The Quaternary of the United States Princeton Univ. Press Princeton, N.J 723735 Google Scholar
Dansgaard, W. (1964). Stable isotopes in precipitation Tellus 16, 436468 CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Gundestrup, N. (1973). Stable isotope glaciology Meddelelser om Groenland 197, 153 Google Scholar
Dansgaard, W., Tauber, H. (1969). Glacier oxygen-18 content and Pleistocene ocean temperatures Science 166, 499502 CrossRefGoogle ScholarPubMed
Denton, G.H., Hughes, T.J. (1981). The Last Great Ice Sheets Wiley New York Google Scholar
Dillon, W.P., Oldale, R.N. (1978). Late Quaternary sea-level curve: Reinterpretation based on glaciotectonic influence Geology 6, 5660 2.0.CO;2>CrossRefGoogle Scholar
Dodge, R.E., Fairbanks, R.G., Benninger, L.K., Maurasse, F. (1983). Pleistocene sea levels from raised coral reets of Haiti Science 219, 14231425 CrossRefGoogle ScholarPubMed
Duplessy, J.-C., Moyes, J., Pujol, C. (1980). Deep water formation in the North Atlantic Ocean during the last ice age Nature (London) 286, 479482 CrossRefGoogle Scholar
Emiliani, C. (1955). Pleistocene temperatures Journal of Geology 63, 538578 CrossRefGoogle Scholar
Epstein, S., Buchsbaum, H.A., Lowenstam, H.A., Urey, H.C. (1953). Revised carbonate-water isotopic temperature scale Geological Society of America Bulletin 64, 13151325 CrossRefGoogle Scholar
Eriksson, E. (1968). Air-ocean-icecap interactions in relation to climatic fluctuations and glaciation cycles Meteorological Monographs 8, no. 30 6892 Google Scholar
Ewing, M., Donn, W.L. (1956). A theory of ice ages Science 123, 10611066 CrossRefGoogle ScholarPubMed
Fairbanks, R.G., Matthews, R.K. (1978). The marine oxygen isotope record in Pleistocene coral, Barbados, West Indices Quaternary Research 10, 181196 CrossRefGoogle Scholar
Flint, R.F. (1943). Growth of the North American Ice Sheet during the Wisconsin age Geological Society of America Bulletin 54, 325362 CrossRefGoogle Scholar
Flint, R.F. (1971). Glacial and Quaternary Geology Wiley New York Google Scholar
Flohn, H.H. (1974). Background of a geophysical model of the initiation of the next glaciation Quaternary Research 4, 385404 CrossRefGoogle Scholar
Fritz, P., Anderson, T.W., Lewis, Cf.M. (1975). Late-Quaternary climatic trends and history of Lake Erie from stable isotope studies Science 190, 267269 CrossRefGoogle Scholar
Hanshaw, B.B., Winograd, I.J., Pearson, F.J. Jr. (1980). Stable isotope studies of subglacially precipitated carbonates and of ancient ground water: Paleoclimatic implications Jacoby, G.C., Proceedings of the International Meeting on Stable Isotopes in Tree-Ring Research United States Department of Energy 102104 Google Scholar
Harmon, R.S., Schwarez, H.P. (1981). Changes of 2H and 18O enrichment of meteoric water and Pleistocene glaciation Nature (London) 290, 125128 CrossRefGoogle Scholar
Hays, J.D. (1978). A review of the Late Quaternary climatic history of Antaretic seas van Zinderen Bakker, E.M., Antarctic Glacial History and World Palaeoenvironments Balkena Rotterdam 5771 Google Scholar
Hays, J.D., Imbrie, J., Shackleton, N.J. (1976). Variations in the Earth's orbit: Pacemaker of the ice ages Science 194, 11211132 CrossRefGoogle ScholarPubMed
Hillaire-Marcel, C. (1981). Paleo-oceanographie isotopique des mers post-glaciaires du Quebec Palaeogeography, Palaeoclimatology, and Palaeoecology 35, 63119 CrossRefGoogle Scholar
Hillaire-Marcel, C., Soucy, J.-M., Cailleux, A. (1979). Analyse isotopique de concretions sous-glaciaires de l'indlandsis laurentidien et teneur en oxygene 18 de la glace Canadian Journal of Earth Sciences 16, 14941498 CrossRefGoogle Scholar
Hooke, R.LeB., Clausen, H. (1982). Wisconsin and Holocene δ18O variations, Barnes Ice Cap, Canada Geological Society of America Bulletin 93, 784789 2.0.CO;2>CrossRefGoogle Scholar
Imbrie, J., Imbrie, J.Z. (1980). Modeling the climatic response to orbital variations Science 207, 943953 CrossRefGoogle ScholarPubMed
International Atomic Energy Agency (IAEA), (1981). Statistical treatment of environmental isotope data in precipitation technical report series No. 206 IAEA Vienna Google Scholar
Ives, J.D., Andrews, J.T., Barry, R.G. (1975). Growth and decay of the Laurentide Ice Sheet and comparisons with Fenno-Scandinavia Naturwissenschaften 62, 118125 CrossRefGoogle Scholar
Kato, K., Watanabe, O., Satow, K. (1978). Oxygen isotopic composition of the surface snow in Mizuho Plateau Ishida, J., Glaciological Studies on Mizuho Plateau, East Antarctica, 1969–1975. Memoirs of the National Institute of Polar Research. 245254 special issue No. 7, TokyoGoogle Scholar
Koerner, R.M. (1979). Accumulation, ablation, and oxygen isotope variations on the Queen Elizabeth Islands ice caps, Canada Journal of Glaciology 22, 2541 CrossRefGoogle Scholar
Lamb, H.H., Woodroffe, A. (1970). Atmospheric circulation during the last ice age Quaternary Research 1, 2958 CrossRefGoogle Scholar
Loewe, F. (1971). Considerations on the origin of the Quaternary Ice Sheet of North America Arctic and Alpine Research 3, 331344 CrossRefGoogle Scholar
Lorius, C., Merlivat, L., Hageman, R. (1969). Variation in the mean deuterium content of precipitations in Antarctica Journal of Geophysical Research 74, no. 28 70277031 CrossRefGoogle Scholar
Lorius, C., Merlivat, L., Jouzel, J., Pourchet, M. (1979). A 30,000 year isotope climatic record from Antarctic ice Nature (London) 280, 644648 CrossRefGoogle Scholar
Mahaffy, M. (1976). A three-dimensional numerical model of ice sheets: Tests on the Barnes Ice Cap, Northwest Territories Journal of Geophysical Research 81, no. 6 10591066 CrossRefGoogle Scholar
Menard, H.W., Smith, S.M. (1966). Hypsometry of ocean basin provinces Journal of Geophysical Research 71, no. 18 43054325 CrossRefGoogle Scholar
Milankovitch, M. (1941). Kanon der Erdbestrahlung und seine Andwendung auf das Eiszeitproblem Royal Serbian Academy Special Publication 133, BelgradeGoogle Scholar
Milliman, J.D., Emery, K.O. (1968). Sea levels during the past 35,000 years Science 162, 11211123 CrossRefGoogle ScholarPubMed
Morgan, V.I. (1982). Antarctic Ice Sheet surface oxygen isotope values Journal of Glaciology 28, 315323 CrossRefGoogle Scholar
Moser, H., Stichler, W. (1980). Environmental isotopes in ice and snow Fritz, P., Fontes, J.Ch., Handbook of Environmental Isotope Geochemistry Vol. 1, Elsevier Amsterdam 142178 “The Terrestrial Environment, A.”Google Scholar
Nye, J.F. (1959). The motion of ice sheets and glaciers Journal of Glaciology 3, 493507 CrossRefGoogle Scholar
Olausson, E. (1965). Evidence of climatic changes in North Atlantic deep-sea cores, with remarks on isotopic paleotemperature analysis Progress in Oceanography 3, 221252 CrossRefGoogle Scholar
Olaussen, E. (1981). On the isotopic composition of late Cenozoic sea water Geografiska Annaler 63A, 34 Google Scholar
Paterson, W.S.B. (1972). Laurentide Ice Sheet: Estimated volumes during late Wisconsin Review of Geophysics and Space Physics 10, no. 4 885917 CrossRefGoogle Scholar
Paterson, W.S.B. (1981). The Physics of Glaciers Pergamon Oxford Google Scholar
Pollard, D. (1978). An investigation of the astronomical theory of ice ages using a simple climate-ice sheet model Nature (London) 272, 233235 CrossRefGoogle Scholar
Pollard, D. (1980). A simple parameterization for ice sheet ablation rate Tellus 32, 384388 CrossRefGoogle Scholar
Pollard, D., Ingersoll, A.P., Lockwood, J.G. (1980). Response of a zonal climate-ice sheet model to the orbital perturbations during the Quaternary ice ages Tellus 32, 301319 CrossRefGoogle Scholar
Ruddiman, W.F., McIntyre, A. (1981). Oceanic mechanisms for amplification of the 23,000-year ice-volume cycle Science 212, 617627 CrossRefGoogle ScholarPubMed
Ruddiman, W.F., McIntyre, A. (1982). Severity and speed of Northern Hemisphere glaciation pulses. The limiting case? Geological Society of America Bulletin 93, 12731279 2.0.CO;2>CrossRefGoogle Scholar
Ruddiman, W.F., and McIntyre, A. (in press). Ice-age thermal response and climatic role of the surface Atlantic Ocean, Geological Society of America Bulletin .Google Scholar
Shackleton, N.J. (1967a). The Measurement of Palaeotemperatures in the Quaternary Era Ph.D. thesis University of Cambridge Google Scholar
Shackleton, N.J. (1967b). Oxygen isotope analyses and Pleistocene temperatures, re-assessed Nature (London) 215, 1517 CrossRefGoogle Scholar
Shackleton, N.J. (1977). The oxygen isotope stratigraphic record of the late Pleistocene Philosophical Transactions Royal Society of London Series B 280, 169182 CrossRefGoogle Scholar
Urey, H.C. (1947). The thermodynamic properties of isotopic substances Journal of the Chemical Society 169182 Google ScholarPubMed
Veeh, H.H., Veevers, J.J. (1970). Sea level at −175 m off the Great Barrier Reef 13,600 to 17,000 years ago Nature (London) 226, 536537 CrossRefGoogle Scholar
Weertman, J. (1964). Rate of growth or shrinkage of nonequilibrium ice sheets Journal of Glaciology 5, 145158 CrossRefGoogle Scholar
Weertman, J. (1976). Milankovitch solar radiation variation and ice age ice sheet sizes Nature 261, 1720 CrossRefGoogle Scholar
Weyl, P.K. (1968). The role of the oceans in climatic change: A theory of the ice ages Meteorological Monographs 8, no. 30 3762 Google Scholar
Williams, D.F., Moore, W.S., Fillon, R.H. (1981). Role of glacial Arctic Ocean ice shelves in Pleistocene oxygen isotope and sea level records Earth and Planetary Science Letters 56, 157166 CrossRefGoogle Scholar
Williams, L.D. (1978). Ice-sheet initiation and climatic influence of expanded snow cover in Arctic Canada Quaternary Research 10, 141149 CrossRefGoogle Scholar
Williams, L.D. (1979). An energy balance model of potential glacierization of Northern Canada Arctic and Alpine Research 11, no. 4 443456 CrossRefGoogle Scholar
Woodruff, F., Savin, S.M., Douglas, R.G. (1981). Miocene stable isotope record: A detailed Pacific deep ocean study and its paleoclimatic implications Science 212, 665668 CrossRefGoogle ScholarPubMed
Yapp, C.J., Epstein, S. (1977). Climatic implications of D/H ratios of meteroric water over North America (9500–22,000 B.P.) as inferred from ancient wood cellulose C-H hydrogen Earth and Planetary Science Letters 34, 333350 CrossRefGoogle Scholar
127
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Oxygen-Isotope Analyses and Pleistocene Ice Volumes1
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Oxygen-Isotope Analyses and Pleistocene Ice Volumes1
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Oxygen-Isotope Analyses and Pleistocene Ice Volumes1
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *