Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-c2bf7 Total loading time: 0.303 Render date: 2021-05-17T11:06:29.351Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

New chronology for the southern Kalahari Group sediments with implications for sediment-cycle dynamics and early hominin occupation

Published online by Cambridge University Press:  20 January 2017

Ari Matmon
Affiliation:
The Fredy & Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
Alan J. Hidy
Affiliation:
The Fredy & Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Shlomy Vainer
Affiliation:
The Fredy & Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
Onn Crouvi
Affiliation:
Israel Geological Survey, 30 Malkhe Israel Street, Jerusalem 95501, Israel
David Fink
Affiliation:
Australian Nuclear Science and Technology Organization, PMB1, Menai, NSW 2234, Australia
Yigal Erel
Affiliation:
The Fredy & Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
Liora K. Horwitz
Affiliation:
National Natural History Collections, Faculty of Life Science, The Hebrew University, Berman Building, Jerusalem 91904, Israel
Michael Chazan
Affiliation:
Department of Anthropology, University of Toronto, 19 Russell Street, Toronto, Ontario M5S 2S2, Canada
Corresponding
E-mail address:

Abstract

Kalahari Group sediments accumulated in the Kalahari basin, which started forming during the breakup of Gondwana in the early Cretaceous. These sediments cover an extensive part of southern Africa and form a low-relief landscape. Current models assume that the Kalahari Group accumulated throughout the entire Cenozoic. However, chronology has been restricted to early–middle Cenozoic biostratigraphic correlations and to OSL dating of only the past ~ 300 ka. We present a new chronological framework that reveals a dynamic nature of sedimentation in the southern Kalahari. Cosmogenic burial ages obtained from a 55 m section of Kalahari Group sediments from the Mamatwan Mine, southern Kalahari, indicate that the majority of deposition at this location occurred rapidly at 1–1.2 Ma. This Pleistocene sequence overlies the Archaean basement, forming a significant hiatus that permits the possibility of many Phanerozoic cycles of deposition and erosion no longer preserved in the sedimentary record. Our data also establish the existence of a shallow early–middle Pleistocene water body that persisted for > 450 ka prior to this rapid period of deposition. Evidence from neighboring archeological excavations in southern Africa suggests an association of high-density hominin occupation with this water body.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below.

References

Argento, D.C. Reedy, R.C. Stone, J.O. (2013). Modeling the earth's cosmic radiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 294, 464469.CrossRefGoogle Scholar
Baillieul, T.A. (1975). A reconnaissance survey of the cover sands in the Republic of Botswana. Journal of Sedimentary Research 45, 494503.Google Scholar
Balco, G. Rovey, C. (2008). An isochron method for cosmogenic-nuclide dating of buried soils and sediments. American Journal of Science 308, 1083 CrossRefGoogle Scholar
Balco, G. Stone, J.O. Lifton, N.A. Dunai, T.J. (2008). A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, 174195.CrossRefGoogle Scholar
Bateman, M.D. Thomas, D.S. Singhvi, A.K. (2003). Extending the aridity record of the Southwest Kalahari: current problems and future perspectives. Quaternary International 111, 3749.CrossRefGoogle Scholar
Bateman, M. Boulter, C. Carr, A. Frederick, C. Peter, D. Wilder, M. (2007). Preserving the palaeoenvironmental record in drylands: bioturbation and its significance for luminescence-derived chronologies. Sedimentary Geology 195, 519.CrossRefGoogle Scholar
Beaumont, P.B. (2004). Kathu Pan and Kathu Townlands/Uitkoms. Morris, D., and Beaumont, P.B. Archaeology in the Northern Cape: Some Key Sites. Southern African Association for Archaeologists Postconference Excursion, Kimberley, McGregor Museum, 5053.Google Scholar
Beaumont, P.B. Vogel, J.C. (2006). On a timescale for the past million years of human history in central South Africa. South African Journal of Science 102, 217228.Google Scholar
Beetz, P. (1933). Geology of south west Angola, between Cunene and Lunda axis. Transactions Geological Society of South Africa 36, 137176.Google Scholar
Berna, F. Goldberg, P. Horwitz, L.K. Brink, J. Holt, S. Bamford, M. Chazan, M. (2012). Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proceedings of the National Academy of Sciences 109, E1215E1220.CrossRefGoogle ScholarPubMed
Beukes, N. Burger, A. Gutzmer, J. (1995). Fault-controlled hydrothermal alteration of Palaeoproterozoic manganese ore in Wessels Mine, Kalahari manganese field. South African Journal of Geology 98, 430451.Google Scholar
Beyene, Y. Katoh, S. WoldeGabriel, G. Hart, W.K. Uto, K. Sudo, M. Kondo, M. Hyodo, M. Renne, P.R. Suwa, G. (2013). The characteristics and chronology of the earliest Acheulean at Konso, Ethiopia. Proceedings of the National Academy of Sciences 110, 15841591.CrossRefGoogle ScholarPubMed
Bierman, P.R. Caffee, M. (2001). Slow rates of rock surface erosion and sediment production across the Namib Desert and escarpment, southern Africa. American Journal of Science 301, 326358.CrossRefGoogle Scholar
Bierman, P.R. Coppersmith, R. Hanson, K. Neveling, J. Portenga, E.W. Rood, D.H. (2014). A cosmogenic view of erosion, relief generation, and the age of faulting in southern Africa. GSA Today 24, 411.CrossRefGoogle Scholar
Bond, G. (1963). Pleistocene environments in southern Africa. Howell, F.C., and Bouliere, F. African Ecology and Human Evolution. Aldine, Chicago.Google Scholar
Brink, J.S. Herries, A.I. Moggi-Cecchi, J. Gowlett, J.A. Bousman, C.B. Hancox, J.P. Grün, R. Eisenmann, V. Adams, J.W. Rossouw, L. (2012). First hominine remains from a ~ 1.0 million year old bone bed at Cornelia-Uitzoek, Free State Province, South Africa. Journal of Human Evolution 63, 527535.CrossRefGoogle ScholarPubMed
Brown, R.W. Gallagher, K. Gleadow, A.J. Summerfield, M.A. (2000). Morphotectonic evolution of the South Atlantic margins of Africa and South America. Geomorphology and Global Tectonics 255281.Google Scholar
Burke, K. (1996). The African plate. South African Journal of Geology 99, 341409.Google Scholar
Burke, K. Gunnell, Y. (2008). The African erosion surface: a continental-scale synthesis of geomorphology, tectonics, and environmental change over the past 180 million years. Geological Society of America Memoirs 201, 166.Google Scholar
Burrough, S.L. Thomas, D.S. Bailey, R.M. (2009). Mega-Lake in the Kalahari: a Late Pleistocene record of the Palaeolake Makgadikgadi system. Quaternary Science Reviews 28, 13921411.CrossRefGoogle Scholar
Catuneanu, O. Wopfner, H. Eriksson, P. Cairncross, B. Rubidge, B. Smith, R. Hancox, P. (2005). The Karoo basins of south-central Africa. Journal of African Earth Sciences 43, 211253.CrossRefGoogle Scholar
Chadwick, O.A. Roering, J.J. Heimsath, A.M. Levick, S.R. Asner, G.P. Khomo, L. (2013). Shaping post-orogenic landscapes by climate and chemical weathering. Geology 41, 11711174.CrossRefGoogle Scholar
Chazan, M. Avery, D.M. Bamford, M.K. Berna, F. Brink, J. Fernandez-Jalvo, Y. Goldberg, P. Holt, S. Matmon, A. Porat, N. (2012). The Oldowan horizon in Wonderwerk Cave (South Africa): archaeological, geological, paleontological and paleoclimatic evidence. Journal of Human Evolution 63, 859866.CrossRefGoogle ScholarPubMed
Chazan, M. Wilkins, J. Morris, D. Berna, F. (2012). Bestwood 1: a newly discovered Earlier Stone Age living surface near Kathu, Northern Cape Province, South Africa. Antiquity 86, 311 Google Scholar
Chmeleff, J. von Blanckenburg, F. Kossert, K. Jakob, D. (2010). Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268, 192199.CrossRefGoogle Scholar
Cornell, D. Schütte, S. (1995). A volcanic-exhalative origin for the world's largest (Kalahari) manganese field. Mineralium Deposita 30, 146151.CrossRefGoogle Scholar
Crouvi, O. Amit, R. Enzel, Y. Porat, N. Sandler, A. (2008). Sand dunes as a major proximal dust source for late Pleistocene loess in the Negev Desert, Israel. Quaternary Research 70, 275282.CrossRefGoogle Scholar
Davis, M. Matmon, A. Rood, D.H. Avnaim-Katav, S. (2012). Constant cosmogenic nuclide concentrations in sand supplied from the Nile River over the past 2.5 my. Geology 40, 359362.CrossRefGoogle Scholar
Day, J. Bills, R. Friel, J. (2009). Lacustrine radiations in African Synodontis catfish. Journal of Evolutionary Biology 22, 805817.CrossRefGoogle Scholar
De Heinzelin, J. (1963). A tentative paleogeographic map of Neogene Africa. Howell, F.C., and Bouliere, F. African Ecology and Human Evolution. Aldine, Chicago.Google Scholar
De Swardt, A. Bennet, G. (1974). Structural and physiographic development of Natal since the late Jurassic. Transactions Geological Society of South Africa 77, 309322.Google Scholar
deMenocal, P.B. (2004). African climate change and faunal evolution during the Pliocene–Pleistocene. Earth and Planetary Science Letters 220, 324.CrossRefGoogle Scholar
Diekmann, B. Kuhn, G. (2002). Sedimentary record of the mid-Pleistocene climate transition in the southeastern South Atlantic (ODP Site 1090). Palaeogeography, Palaeoclimatology, Palaeoecology 182, 241258.CrossRefGoogle Scholar
Dingle, R. (1982). Continental margin subsidence: a comparison between the east and west coasts of Africa. Dynamics of Passive Margins. 5971.Google Scholar
Doucouré, C.M. de Wit, M.J. (2003). Old inherited origin for the present near-bimodal topography of Africa. Journal of African Earth Sciences 36, 371388.CrossRefGoogle Scholar
Du Toit, A. (1927). The Kalahari and some of its problems. South African Journal of Science 24, 88101.Google Scholar
Du Toit, A. (1933). Crustal movement as a factor in the geographical evolution of South Africa. South African Geographical Journal 16, 20 Google Scholar
Erlanger, E.D. Granger, D.E. Gibbon, R.J. (2012). Rock uplift rates in South Africa from isochron burial dating of fluvial and marine terraces. Geology 40, 10191022.CrossRefGoogle Scholar
Evans, D. Gutzmer, J. Beukes, N. Kirschvink, J. (2001). Paleomagnetic constraints on ages of mineralization in the Kalahari manganese field, South Africa. Economic Geology 96, 621631.Google Scholar
Gibbon, R.J. Granger, D.E. Kuman, K. Partridge, T.C. (2009). Early Acheulean technology in the Rietputs Formation, South Africa, dated with cosmogenic nuclides. Journal of Human Evolution 56, 152160.CrossRefGoogle ScholarPubMed
Gibbon, R.J. Pickering, T.R. Sutton, M.B. Heaton, J.L. Kuman, K. Clarke, R.J. Brain, C. Granger, D.E. (2014). Cosmogenic nuclide burial dating of hominin-bearing Pleistocene cave deposits at Swartkrans, South Africa. Quaternary Geochronology 24, 1015.CrossRefGoogle Scholar
Ginat, H. Zilberman, E. Saragusti, I. (2003). Early pleistocene lake deposits and Lower Paleolithic finds in Nahal (wadi) Zihor, Southern Negev desert, Israel. Quaternary Research 59, 445458.CrossRefGoogle Scholar
Giresse, P. (2005). Mesozoic–Cenozoic history of the Congo Basin. Journal of African Earth Sciences 43, 301315.CrossRefGoogle Scholar
Goodman-Tchernov, B.N. Dey, H.W. Reinhardt, E.G. McCoy, F. Mart, Y. (2009). Tsunami waves generated by the Santorini eruption reached Eastern Mediterranean shores. Geology 37, 943946.CrossRefGoogle Scholar
Granger, D.E. (2006). A review of burial dating methods using 26Al and 10Be. Geological Society of America Special Paper 415, 1 Google Scholar
Granger, D.E. (2014). Cosmogenic Nuclide Burial Dating in Archaeology and Paleoanthropology. Turekian, H.D.H.K. Treatise on Geochemistry. Second Edition Elsevier, Oxford. 8197.Google Scholar
Granger, D. Muzikar, P. (2001). Dating sediment burial with in situ-produced cosmogenic nuclides: theory, techniques, and limitations. Earth and Planetary Science Letters 188, 269281.CrossRefGoogle Scholar
Granger, D.E. Kirchner, J.W. Finkel, R.C. (1997). Quaternary downcutting rate of the New River, Virginia, measured from differential decay of cosmogenic 26Al and 10Be in cave-deposited alluvium. Geology 25, 107110.2.3.CO;2>CrossRefGoogle Scholar
Gutzmer, J. Beukes, N.J. (1996). Mineral paragenesis of the Kalahari managanese field, South Africa. Ore Geology Reviews 11, 405428.CrossRefGoogle Scholar
Haddon, I. (2000). Kalahari group sediments. Oxford Monographs on Geology and Geophysics 40, 173181.Google Scholar
Haddon, I. McCarthy, T. (2005). The Mesozoic–Cenozoic interior sag basins of Central Africa: the Late-Cretaceous–Cenozoic Kalahari and Okavango basins. Journal of African Earth Sciences 43, 316333.CrossRefGoogle Scholar
Hidy, A.J. Gosse, J.C. Pederson, J.L. Mattern, J.P. Finkel, R.C. (2010). A geologically constrained Monte Carlo approach to modeling exposure ages from profiles of cosmogenic nuclides: an example from Lees Ferry, Arizona. Geochemistry, Geophysics, Geosystems 11, Q0AA10 CrossRefGoogle Scholar
Hidy, A.J. Gosse, J.C. Froese, D.G. Bond, J.D. Rood, D.H. (2013). A latest Pliocene age for the earliest and most extensive Cordilleran Ice Sheet in northwestern Canada. Quaternary Science Reviews 61, 7784.CrossRefGoogle Scholar
Hidy, A.J. Gosse, J.C. Blum, M.D. Gibling, M.R. (2014). Glacial–interglacial variation in denudation rates from interior Texas, USA, established with cosmogenic nuclides. Earth and Planetary Science Letters 390, 209221.CrossRefGoogle Scholar
Jahn, B. Donner, B. Müller, P.J. Röhl, U. Schneider, R.R. Wefer, G. (2003). Pleistocene variations in dust input and marine productivity in the northern Benguela Current: evidence of evolution of global glacial–interglacial cycles. Palaeogeography, Palaeoclimatology, Palaeoecology 193, 515533.CrossRefGoogle Scholar
Johnson, M. Van Vuuren, C. Hegenberger, W. Key, R. Show, U. (1996). Stratigraphy of the Karoo Supergroup in southern Africa: an overview. Journal of African Earth Sciences 23, 315.CrossRefGoogle Scholar
Kanthack, F.E. (1921). Notes on the Kunene River, Southern Angola. Geographical Journal 57, 321336.CrossRefGoogle Scholar
King, L.C. (1942). South African scenery. A textbook of geomorphology. South African scenery A Textbook of Geomorphology. Oliver and Boyd, Edinburgh. (340 pp.)Google Scholar
King, L.C. (1948). On the ages of African land-surfaces. Quarterly Journal of the Geological Society 104, 439459.CrossRefGoogle Scholar
King, L.C. (1955). Pediplanation and isostasy: an example from South Africa. Quarterly Journal of the Geological Society 111, 353359.CrossRefGoogle Scholar
King, L.C. King, L.A. (1959). A reappraisal of the Natal monocline. South African Geographical Journal 41, 1530.CrossRefGoogle Scholar
Klein, R.G. (1988). The archaeological significance of animal bones from Acheulean sites in southern Africa. African Archaeological Review 6, 325.CrossRefGoogle Scholar
Kohl, C. Nishiizumi, K. (1992). Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochimica et Cosmochimica Acta 56, 35833587.CrossRefGoogle Scholar
Korschinek, G. Bergmaier, A. Faestermann, T. Gerstmann, U. Knie, K. Rugel, G. Wallner, A. Dillmann, I. Dollinger, G. Von Gostomski, C.L. (2010). A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268, 187191.CrossRefGoogle Scholar
Lal, D. (1991). Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, 424439.CrossRefGoogle Scholar
Lee-Thorp, J.A. Sponheimer, M. Luyt, J. (2007). Tracking changing environments using stable carbon isotopes in fossil tooth enamel: an example from the South African hominin sites. Journal of Human Evolution 53, 595601.CrossRefGoogle ScholarPubMed
Lifton, N. Sato, T. Dunai, T.J. (2014). Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth and Planetary Science Letters 386, 149160.CrossRefGoogle Scholar
Lisiecki, L.E. Raymo, M.E. (2005). A Plio-Pleistocene stack of 57 globally distributed benthic 18O records. Paleoceanography 20, 522533.Google Scholar
Maslin, M.A. Brierley, C.M. Milner, A.M. Shultz, S. Trauth, M.H. Wilson, K.E. (2014). East African climate pulses and early human evolution. Quaternary Science Reviews 101, 117.CrossRefGoogle Scholar
Matmon, A. Ron, H. Chazan, M. Porat, N. Horwitz, L. (2012). Reconstructing the history of sediment deposition in caves: a case study from Wonderwerk Cave, South Africa. Geological Society of America Bulletin 124, 611625.CrossRefGoogle Scholar
Matmon, A. Mushkin, A. Enzel, Y. Grodek, T. Team, A. (2013). Erosion of a granite inselberg, Gross Spitzkoppe, Namib desert. Geomorphology 201, 5259.CrossRefGoogle Scholar
Matmon, A. Fink, D. Davis, M. Niedermann, S. Rood, D. Frumkin, A. (2014). Unraveling rift margin evolution and escarpment development ages along the Dead Sea fault using cosmogenic burial ages. Quaternary Research 82, 281295.CrossRefGoogle Scholar
Maxwell, T.A. Issawi, B. Haynes, C.V. (2010). Evidence for Pleistocene lakes in the Tushka region, south Egypt. Geology 38, 11351138.CrossRefGoogle Scholar
McCarthy, T. (1983). Evidence for the former existence of a major, southerly flowing river in Griqualand West. Verhandelinge van die Geologiese Vereniging van Suid-Afrika 86, 3749.Google Scholar
Mercader, J. Gosse, J.C. Bennett, T. Hidy, A.J. Rood, D.H. (2012). Cosmogenic nuclide age constraints on Middle Stone Age lithics from Niassa, Mozambique. Quaternary Science Reviews 47, 116130.CrossRefGoogle Scholar
Miller, R.M. Pickford, M. Senut, B. (2010). The geology, palaeontology and evolution of the Etosha Pan, Namibia: implications for terminal Kalahari deposition. South African Journal of Geology 113, 307334.CrossRefGoogle Scholar
Modisi, M. Atekwana, E. Kampunzu, A. Ngwisanyi, T. (2000). Rift kinematics during the incipient stages of continental extension: evidence from the nascent Okavango rift basin, northwest Botswana. Geology 28, 939942.2.0.CO;2>CrossRefGoogle Scholar
Moore, A. (1988). Plant distribution and the evolution of the major river systems in southern Africa. South African Journal of Geology 91, 346349.Google Scholar
Moore, A. (1999). A reappraisal of epeirogenic flexure axes in southern Africa. South African Journal of Geology 102, 363376.Google Scholar
Moore, A. Eckardt, F. (2012). The evolution and ages of Makgadikgadi palaeo-lakes: consilient evidence from Kalahari drainage evolution south-central Africa. South African Journal of Geology 115, 385413.CrossRefGoogle Scholar
Moore, A. Larkin, P. (2001). Drainage evolution in south-central Africa since the breakup of Gondwana. South African Journal of Geology 104, 4768.CrossRefGoogle Scholar
Moore, A. Blenkinsop, T. Cotterill, F.W. (2009). Southern African topography and erosion history: plumes or plate tectonics?. Terra Nova 21, 310315.CrossRefGoogle Scholar
Nichols, K.K. Bierman, P.R. Hooke, R.L. Clapp, E.M. Caffee, M. (2002). Quantifying sediment transport on desert piedmonts using 10Be and 26Al. Geomorphology 45, 105125.CrossRefGoogle Scholar
Nichols, K. Bierman, P. Eppes, M. Caffee, M. Finkel, R. Larsen, J. (2005). Deciphering the Late Pleistocene and Holocene history of the complex Chemehuevi Mountain piedmont using 10Be and 26Al. American Journal of Science 305, 345368.CrossRefGoogle Scholar
Nishiizumi, K. (2004). Preparation of 26Al AMS standards. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 223, 388392.CrossRefGoogle Scholar
Nishiizumi, K. Imamura, M. Caffee, M.W. Southon, J.R. Finkel, R.C. McAninch, J. (2007). Absolute calibration of 10Be AMS standards. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 258, 403413.CrossRefGoogle Scholar
Partridge, T.C. (1998). Of diamonds, dinosaurs and diastrophism; 150 million years of landscape evolution in southern Africa. South African Journal of Geology 101, 167184.Google Scholar
Partridge, T.C. Maud, R.R. (1987). Geomorphic evolution of southern Africa since the Mesozoic. South African Journal of Geology 90, 179208.Google Scholar
Partridge, T. Maud, R. (2000). Macro-scale geomorphic evolution of southern Africa. Oxford Monographs on Geology and Geophysics 40, 318.Google Scholar
Partridge, T. Granger, D. Caffee, M. Clarke, R. (2003). Lower Pliocene hominid remains from Sterkfontein. Science 300, 607612.CrossRefGoogle Scholar
Passarge, S. (1904). Die Kalahari. Reimer Berlin, Google Scholar
Pisias, N.G. Moore, T. Jr. (1981). The evolution of Pleistocene climate: a time series approach. Earth and Planetary Science Letters 52, 450458.CrossRefGoogle Scholar
Placzek, C. Matmon, A. Granger, D. Quade, J. Niedermann, S. (2010). Evidence for active landscape evolution in the hyperarid Atacama from multiple terrestrial cosmogenic nuclides. Earth and Planetary Science Letters 295, 1220.CrossRefGoogle Scholar
Podgorski, J.E. Green, A.G. Kgotlhang, L. Kinzelbach, W.K. Kalscheuer, T. Auken, E. Ngwisanyi, T. (2013). Paleo-megalake and paleo-megafan in southern Africa. Geology 41, 11551158.CrossRefGoogle Scholar
Porat, N. Chazan, M. Grün, R. Aubert, M. Eisenmann, V. Horwitz, L.K. (2010). New radiometric ages for the Fauresmith industry from Kathu Pan, southern Africa: implications for the Earlier to Middle Stone Age transition. Journal of Archaeological Science 37, 269283.CrossRefGoogle Scholar
Reeves, C. (1972). Rifting in the Kalahari?. Nature 237, 9596.CrossRefGoogle Scholar
Scharf, T.E. Codilean, A.T. De Wit, M. Jansen, J.D. Kubik, P.W. (2013). Strong rocks sustain ancient postorogenic topography in southern Africa. Geology 41, 331334.CrossRefGoogle Scholar
Schefuß, E. Schouten, S. Jansen, J.F. Damsté, J.S.S. (2003). African vegetation controlled by tropical sea surface temperatures in the mid-Pleistocene period. Nature 422, 418421.CrossRefGoogle ScholarPubMed
Scholz, C. Koczynski, T. Hutchins, D. (1976). Evidence for incipient rifting in southern Africa. Geophysical Journal International 44, 135144.CrossRefGoogle Scholar
Shanahan, T.M. Zreda, M. (2000). Chronology of quaternary glaciations in East Africa. Earth and Planetary Science Letters 177, 2342.CrossRefGoogle Scholar
Stokes, S. Haynes, G. Thomas, D. Horrocks, J. Higginson, M. Malifa, M. (1998). Punctuated aridity in southern Africa during the last glacial cycle: the chronology of linear dune construction in the northeastern Kalahari. Palaeogeography, Palaeoclimatology, Palaeoecology 137, 305322.CrossRefGoogle Scholar
Summerfield, M. (1985). Plate tectonics and landscape development on the African continent Tectonic Geomorphology. Allen and Unwin, Boston. 2751.Google Scholar
Summerfield, M.A. (1988). Global tectonics and landform development. Progress in Physical Geography 12, 389404.CrossRefGoogle Scholar
Thomas, D.S. (1991). The Kalahari Environment. Elsevier Inc., Google Scholar
Thomas, D.S.G. Shaw, P.A. (1988). Late Cainozoic drainage evolution in the Zambezi basin: geomorphological evidence from the Kalahari rim. Journal of African Earth Sciences (and the Middle East) 7, 611618.CrossRefGoogle Scholar
Thomas, D. Shaw, P. (1990). The deposition and development of the Kalahari Group sediments, central southern Africa. Journal of African Earth Sciences (and the Middle East) 10, 187197.CrossRefGoogle Scholar
Thomas, D.S. Shaw, P.A. (2002). Late Quaternary environmental change in central southern Africa: new data, synthesis, issues and prospects. Quaternary Science Reviews 21, 783797.CrossRefGoogle Scholar
Thomas, D.S. O'Connor, P. Bateman, M. Shaw, P. Stokes, S. Nash, D. (2000). Dune activity as a record of late Quaternary aridity in the Northern Kalahari: new evidence from northern Namibia interpreted in the context of regional arid and humid chronologies. Palaeogeography, Palaeoclimatology, Palaeoecology 156, 243259.CrossRefGoogle Scholar
Tauth, M.H. Maslin, M.A. Deino, A.L. Junginger, A. Lesoloyia, M. Odada, E.O. Olago, D.O. Olaka, L.A. Strecker, M.R. Tiedemann, R. (2010). Human evolution in a variable environment: the amplifier lakes of Eastern Africa. Quaternary Science Reviews 29, 29812988.CrossRefGoogle Scholar
Van der Wateren, F.M. Dunai, T.J. (2001). Late Neogene passive margin denudation history—cosmogenic isotope measurements from the central Namib desert. Global and Planetary Change 30, 271307.CrossRefGoogle Scholar
Van Niekerk, H. Gutzmer, J. Beukes, N. Phillips, D. Kiviets, G. (1999). An 40Ar/39Ar age of supergene K–Mn oxyhydroxides in a post-Gondwana soil profile on the Highveld of South Africa. South African Journal of Science 95, 450454.Google Scholar
Vermeesch, P. Fenton, C. Kober, F. Wiggs, G. Bristow, C.S. Xu, S. (2010). Sand residence times of one million years in the Namib Sand Sea from cosmogenic nuclides. Nature Geoscience 3, 862865.CrossRefGoogle Scholar
Walker, S.J. Lukich, V. Chazan, M. (2014). Kathu Townlands: a high density earlier Stone Age locality in the interior of South Africa. PloS One 9, e103436 CrossRefGoogle Scholar
Wellington, J.H. (1938). The Kunene river and the Etosha plain. South African Geographical Journal 20, 2132.CrossRefGoogle Scholar
Wellington, J.H. (1955). Southern Africa: A Geographical Study. University Press Cambridge, Google Scholar
Wilkins, J. Chazan, M. (2012). Blade production ~ 500 thousand years ago at Kathu Pan 1, South Africa: support for a multiple origins hypothesis for early Middle Pleistocene blade technologies. Journal of Archaeological Science 39, 18831900.CrossRefGoogle Scholar
Wilkins, J. Schoville, B.J. Brown, K.S. Chazan, M. (2012). Evidence for early hafted hunting technology. Science 338, 942946.CrossRefGoogle ScholarPubMed
Wittmann, H. von Blanckenburg, F. Maurice, L. Guyot, J.L. Filizola, N. Kubik, P.W. (2011). Sediment production and delivery in the Amazon River basin quantified by in situ-produced cosmogenic nuclides and recent river loads. Geological Society of America Bulletin 123, 934950.CrossRefGoogle Scholar
Wittmann, H. von Blanckenburg, F. Maurice, L. Guyot, J.L. Kubik, P.W. (2011). Recycling of Amazon floodplain sediment quantified by cosmogenic Al-26 and Be-10. Geology 39, 467470.CrossRefGoogle Scholar
York, D. (1966). Least-squares fitting of a straight line. Canadian Journal of Physics 44, 10791086.CrossRefGoogle Scholar
Supplementary material: File

Matmon et al. supplementary material

Supplementary Material

Download Matmon et al. supplementary material(File)
File 1 MB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

New chronology for the southern Kalahari Group sediments with implications for sediment-cycle dynamics and early hominin occupation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

New chronology for the southern Kalahari Group sediments with implications for sediment-cycle dynamics and early hominin occupation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

New chronology for the southern Kalahari Group sediments with implications for sediment-cycle dynamics and early hominin occupation
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *