Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-ssw5r Total loading time: 0.566 Render date: 2022-08-09T13:27:45.415Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Mineral magnetic properties of loess–paleosol couplets of northern Serbia over the last 1.0 Ma

Published online by Cambridge University Press:  13 August 2021

Namier Namier
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China University of the Chinese Academy of Sciences, Beijing100049, China
Xinbo Gao
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China
Qingzhen Hao*
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China University of the Chinese Academy of Sciences, Beijing100049, China Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing100044, China
Slobodan B. Marković
Affiliation:
Department of Physical Geography, Faculty of Sciences, University of Novi Sad, 21000Novi Sad, Serbia Serbian Academy of Sciences and Arts, Belgrade11000, Serbia
Yu Fu
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China University of the Chinese Academy of Sciences, Beijing100049, China
Yang Song
Affiliation:
Beijing Research Center of Urban System Engineering, Beike Building, Beijing100035, China
Huandi Zhang
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China University of the Chinese Academy of Sciences, Beijing100049, China
Xuechao Wu
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China University of the Chinese Academy of Sciences, Beijing100049, China
Chenglong Deng
Affiliation:
University of the Chinese Academy of Sciences, Beijing100049, China State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
Milivoj B. Gavrilov
Affiliation:
Department of Physical Geography, Faculty of Sciences, University of Novi Sad, 21000Novi Sad, Serbia
Zhengtang Guo
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China University of the Chinese Academy of Sciences, Beijing100049, China Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing100044, China
*
*Corresponding author at: E-mail address: haoqz@mail.iggcas.ac.cn (Qingzhen Hao).

Abstract

We conducted the first detailed mineral magnetic investigation of more than nine loess–paleosol couplets of the composite Titel-Stari Slankamen loess section in Serbia, which provides one of the longest and most complete terrestrial record of paleoclimatic changes in Europe since ~1.0 Ma. The results show that the ferrimagnetic mineral assemblage of the loess units is dominated by partially oxidized multidomain (MD) and pseudo-single domain (PSD) magnetite; however, with an increasing degree of pedogenesis, the eolian contribution is gradually masked by pedogenic superparamagnetic(SP) and single-domain (SD) ferrimagnets (mainly maghemite). The overall consistency of ferrimagnetic grain-size parameters indicates an absence of dissolution of the fine-grained ferrimagnetic fraction despite changes in climate regime over the past 1.0 Ma. The variations of normalized dJ/dT@120K and normalized χheating@530°C reflect a long-term stepwise increase in aridity during glacials with a major step at ~0.6–0.5 Ma, over the last 1.0 Ma. Overall, the results provide an improved basis for the future use of the magnetic properties of Serbian loess deposits for paleoclimatic reconstruction.

Type
Thematic Set: Eurasian Climate and Environment
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, Z., Kutzbach, J.E., Prell, W.L., Porter, S.C., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411, 6266.Google Scholar
Avramov, V. I., Jordanova, D., Hoffmann, V., Roesler, W., 2006. The role of dust source area and pedogenesis in three loess-palaeosol sections from North Bulgaria: a mineral magnetic study. Studia Geophysica et Geodaetica 50, 259282.CrossRefGoogle Scholar
Bakhmutov, V.G., Kazanskii, A.Y., Matasova, G.G., Glavatskii, D.V., 2017. Rock magnetism and magnetostratigraphy of the loess-sol series of Ukraine (Roksolany, Boyanychi, and Korshev sections). Izvestiya Physics of the Solid Earth 53, 864884.CrossRefGoogle Scholar
Baumgart, P., Hambach, U., Meszner, S., Faust, D., 2013. An environmental magnetic fingerprint of periglacial loess: records of Late Pleistocene loess-palaeosol sequences from Eastern Germany. Quaternary International 296, 8293.CrossRefGoogle Scholar
Bloemendal, J., Liu, X., 2005. Rock magnetism and geochemistry of two Plio-Pleistocene Chinese loess-palaeosol sequences—implications for quantitative palaeoprecipitation reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 226, 149166.CrossRefGoogle Scholar
Bronger, A., 2003. Correlation of loess–paleosol sequences in East and Central Asia with SE Central Europe: towards a continental Quaternary pedostratigraphy and paleoclimatic history. Quaternary International 106–107, 1131.CrossRefGoogle Scholar
Buggle, B., Hambach, U., Kehl, M., Marković, S.B., Zöller, L., Glaser, B., 2013. The progressive evolution of a continental climate in southeast-central European lowlands during the Middle Pleistocene recorded in loess paleosol sequences. Geology 41, 771774.CrossRefGoogle Scholar
Buggle, B., Hambach, U., Müller, K., Zöller, L., Marković, S.B., Glaser, B., 2014. Iron mineralogical proxies and Quaternary climate change in SE-European loess–paleosol sequences. Catena 117, 422.CrossRefGoogle Scholar
Carvallo, C., Muxworthy, A.R., Dunlop, D.J., Williams, W., 2003. Micromagnetic modeling of first-order reversal curve (FORC) diagrams for single-domain and pseudo-single-domain magnetite. Earth and Planetary Science Letters 213, 375390.CrossRefGoogle Scholar
Clark, P.U., Alley, R.B., Pollard, D., 1999. Northern Hemisphere ice-sheet influences on global climate change. Science 286, 11041111.CrossRefGoogle Scholar
Deng, C., Vidic, N.J., Verosub, K.L., Singer, M.J., Liu, Q., Shaw, J., Zhu, R., 2005. Mineral magnetic variation of the Jiaodao Chinese loess/paleosol sequence and its bearing on long-term climatic variability. Journal of Geophysical Research 110, B03103.CrossRefGoogle Scholar
Deng, C., Zhu, R., Jackson, M., Verosub, K., Singer, M., 2001. Variability of the temperature-dependent susceptibility of the Holocene eolian deposits in the Chinese Loess Plateau: a pedogenesis indicator. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 26, 873878.CrossRefGoogle Scholar
Deng, C., Zhu, R., Verosub, K.L., Singer, M.J., Vidic, N.J., 2004. Mineral magnetic properties of loess/paleosol couplets of the central loess plateau of China over the last 1.2 Myr. Journal of Geophysical Research 109, B01103.CrossRefGoogle Scholar
Deng, C., Zhu, R., Verosub, K., Singer, M., Yuan, B., 2000. Paleoclimatic significance of the temperature-dependent susceptibility of Holocene loess along a NW-SE transect in the Chinese Loess Plateau. Geophysical Research Letters 27, 37153718.CrossRefGoogle Scholar
Ding, Z., Sun, J., Liu, D., 1999. Stepwise advance of the mu us desert since late Pliocene: evidence from a red clay-loess record. Chinese Science Bulletin 44, 12111214.CrossRefGoogle Scholar
Dunlop, D.J., Özdemir, Ö., 1997. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, New York, pp. 316324.CrossRefGoogle Scholar
Egli, R., Chen, A.P., Winklhofer, M., Kodama, K.P., Horng, C.S., 2010. Detection of noninteracting single domain particles using first-order reversal curve diagrams. Geochemistry, Geophysics, Geosystems 11, Q01Z11.CrossRefGoogle Scholar
Evans, M.E., Heller, F., 2003. Environmental Magnetism: Principles and Applications of Enviromagnetics. Academic Press, New York, pp. 136171.Google Scholar
Evans, M.E., Heller, F., 2001. Magnetism of loess/palaeosol sequences: recent developments. Earth-Science Reviews 54, 129144.CrossRefGoogle Scholar
Fang, X., An, Z., Clemens, S.C., Zan, J., Shi, Z., Yang, S., Han, W., 2020. The 3.6-Ma aridity and westerlies history over midlatitude Asia linked with global climatic cooling. Proceedings of the National Academy of Sciences USA 117, 2472924734.CrossRefGoogle ScholarPubMed
Fitzsimmons, K.E., Marković, S.B., Hambach, U., 2012. Pleistocene environmental dynamics recorded in the loess of the middle and lower Danube basin. Quaternary Science Reviews 41, 104118.CrossRefGoogle Scholar
Forster, T., Evans, M.E., Heller, F., 1994. The frequency dependence of low field susceptibility in loess sediments. Geophysical Journal International 118, 636642.CrossRefGoogle Scholar
Forster, T., Heller, F., Evans, M. E., Havliček, P., 1996. Loess in the Czech Republic: Magnetic properties and paleoclimate. Studia Geophysica et Geodaetica 40, 243261.CrossRefGoogle Scholar
Gao, X., Hao, Q., Oldfield, F., Bloemendal, J., Deng, C., Wang, L., Song, Y., et al. , 2019. New high-temperature dependence of magnetic susceptibility-based climofunction for quantifying paleoprecipitation from Chinese loess. Geochemistry Geophysics Geosystems 20,42734291.CrossRefGoogle Scholar
Gao, X., Hao, Q., Wang, L., Oldfield, F., Bloemendal, J., Deng, C., Song, Y., et al. , 2018. The different climatic response of pedogenic hematite and ferrimagnetic minerals: evidence from particle-sized modern soils over the Chinese Loess Plateau. Quaternary Science Reviews 179, 6986.CrossRefGoogle Scholar
Gavrilov, M.B., An, W., Xu, C., Radaković, M.G., Hao, Q., Yang, F., Guo, Z., Perić, Z., Gavrilov, G., Marković, S.B., 2019. Independent aridity and drought pieces of evidence based on meteorological data and tree ring data in Southeast Banat, Vojvodina, Serbia. Atmosphere 10, 586.CrossRefGoogle Scholar
Gavrilov, M.B., Marković, S.B., Schaetzl, R.J., Tošić, I.A., Zeeden, C., Obreht, I., Sipos, G., et al. , 2018. Prevailing surface winds in Northern Serbia in the recent and past time periods; modern- and past dust deposition. Aeolian Research 32, 117129.CrossRefGoogle Scholar
Gavrilov, M.B., Radaković, M.G., Sipos, G., Mezősi, G., Gavrilov, G., Lukić, T., Basarin, B., et al. , 2020. Aridity in the central and southern Pannonian basin. Atmosphere 11, 1269.CrossRefGoogle Scholar
Gehring, A.U., Hofmeister, A.M., 1994. The transformation of lepidocroeite during heating: a magnetic and spectroscopic study. Clays and Clay Minerals 42, 409415.CrossRefGoogle Scholar
Geiss, C.E., Egli, R., Zanner, C.W., 2008. Direct estimates of pedogenic magnetite as a tool to reconstruct past climates from buried soils. Journal of Geophysical Research 113, B11102.CrossRefGoogle Scholar
Gendler, T.S., Heller, F., Tsatskin, A., Spassov, S., DuPasquier, J., Faustov, S.S., 2006. Roxolany and Novaya Etuliya—key sections in the western Black Sea area: magnetostratigraphy, rock magnetism and paleopedology. Quaternary International 152153, 78–93.Google Scholar
Guo, X.L., Banerjee, S. K., Wang, R.H., Zhao, G.Y., Song, H., Bin, L., Li, Q., Liu, X. M.. 2018. Why magnetite is not the only indicator of past rainfall in the Chinese loess plateau? Geophysical Journal International 213, 21282137.CrossRefGoogle Scholar
Guo, Z.T., Berger, A., Yin, Q.Z., Qin, L., 2009. Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records. Climate of the Past 5, 2131.CrossRefGoogle Scholar
Haase, D., Fink, J., Haase, G., Ruske, R., Pécsi, M., Richter, H., Altermann, M., Jäger, K.D., 2007. Loess in Europe—its spatial distribution based on a European loess map, scale 1:2,500,000. Quaternary Science Reviews 26, 13011312.CrossRefGoogle Scholar
Hao, Q., Guo, Z., 2005. Spatial variations of magnetic susceptibility of Chinese loess for the last 600 kyr: implications for monsoon evolution. Journal of Geophysical Research 110, B12101.CrossRefGoogle Scholar
Hao, Q., Oldfield, F., Bloemendal, J., Guo, Z., 2008. Particle size separation and evidence for pedogenesis in samples from the Chinese Loess Plateau spanning the past 22 My. Geology 36, 727730.CrossRefGoogle Scholar
Hao, Q., Oldfield, F., Bloemendal, J., Guo, Z., 2012a. Hysteresis and thermomagnetic properties of particle-sized fractions from loess and palaeosol samples spanning 22 Myr of accumulation on the Chinese Loess Plateau. Geophysical Journal International 191, 6477.CrossRefGoogle Scholar
Hao, Q., Wang, L., Oldfield, F., Peng, S., Qin, L., Song, Y., Xu, B., Qiao, Y., Bloemendal, J., Guo, Z., 2012b. Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability. Nature 490, 393396.CrossRefGoogle Scholar
Harrison, R.J., Feinberg, J.M., 2008. FORCinel: an improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing. Geochemistry, Geophysics, Geosystems 9, Q05016.CrossRefGoogle Scholar
Heller, F., Evans, M.E., 1995. Loess magnetism. Reviews of Geophysics 33, 211240.CrossRefGoogle Scholar
Heller, F., Liu, T., 1982. Magnetostratigraphical dating of loess deposits in China. Nature 300, 431433.CrossRefGoogle Scholar
Heller, F., Liu, T., 1984. Magnetism of Chinese loess deposits. Geophysical Journal International 77, 125141.CrossRefGoogle Scholar
Heller, F., Liu, T., 1986. Palaeoclimatic and sedimentary history from magnetic susceptibility of loess in China. Geophysical Research Letters 13, 11691172.CrossRefGoogle Scholar
Hoffmann, V., Knab, M., Appel, E., 1999. Magnetic susceptibility mapping of roadside pollution. Journal of Geochemical Exploration 66, 313326.CrossRefGoogle Scholar
Hošek, J., Hambach, U., Lisá, L., Grygar, T. M., Horáček, I., Meszner, S., Knésl, I., 2015. An integrated rock-magnetic and geochemical approach to loess/paleosol sequences from Bohemia and Moravia (Czech Republic): implications for the Upper Pleistocene paleoenvironment in central Europe. Palaeogeography Palaeoclimatology, Palaeoecology 418, 344358.CrossRefGoogle Scholar
Hunt, C. P., Banerjee, S. K., Han, J., Solheid, P. A., Oches, E., Sun, W., Liu, T., 1995. Rock-magnetic proxies of climate change in the loess-palaeosol sequences of the western Loess Plateau of China. Geophysical Journal International 123, 232244.CrossRefGoogle Scholar
Jary, Z., Ciszek, D., 2013. Late Pleistocene loess-palaeosol sequences in Poland and western Ukraine. Quaternary International 296, 3750.CrossRefGoogle Scholar
Jordanova, D., Hus, J., Geeraerts, R., 2007. Palaeoclimatic implications of the magnetic record from loess/palaeosol sequence Viatovo (NE Bulgaria). Geophysical Journal of the Royal Astronomical Society 171, 10361047.CrossRefGoogle Scholar
Jordanova, D., Jordanova, N., 2021. Updating the significance and paleoclimate implications of magnetic susceptibility of Holocene loessic soils. Geoderma 391, 114982.CrossRefGoogle Scholar
Jordanova, D., Petersen, N., 1999. Palaeoclimatic record from a loess–soil profile in northeastern Bulgaria – II. Correlation with global climatic events during the Pleistocene. Geophysical Journal International 138, 533540.Google Scholar
Kakol, Z., Sabol, J., Stickler, J., Honig, J.M., 1992. Effect of low-level titanium (IV) doping on the resistivity of magnetite near the Verwey transition. Physical Review B Condensed Matter 46, 19751978.CrossRefGoogle ScholarPubMed
Kakol, Z., Sabol, J., Stickler, J. Kozowski, A., Honig, J.M., 1994. Influence of titanium doping on the magnetocrystalline anisotropy of magnetite. Physical review. B 49, 1276712772.CrossRefGoogle ScholarPubMed
Kozovski, A., Kakol, Z., Zalecki, R., Honig., J.M., 1995. Specific heat of low doped magnetite, Fe3-χTiχO4 and Fe3-yZnyO4. Journal of Magnetism and Magnetic Materials 140–144, 20832084.Google Scholar
Kozovski, A., Metcalf, P., Kakol, Z., Honig, J. M., 1996. Electrical transport and magnetization measurements of Fe3-zAlzO4, z < 0.06. Journal of Magnetism and Magnetic Materials 157–158, 415416.Google Scholar
Lascu, I., Harrison, R.J., Li, Y., Muraszko, J., Channell, J.E., Piotrowski, A. M., Hodell, D.A., 2015. Magnetic unmixing of first-order reversal curve diagrams using principal component analysis. Geochemistry, Geophysics, Geosystems 16, 29002915.CrossRefGoogle Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003.Google Scholar
Liu, Q., Banerjee, S.K., Jackson, M.J., Chen, F., Pan, Y., Zhu, R., 2003a. An integrated study of the grain-size-dependent magnetic mineralogy of the Chinese loess/paleosol and its environmental significance. Journal of Geophysical Research 108, 2437.CrossRefGoogle Scholar
Liu, Q., Banerjee, S.K., Jackson, M.J., Maher, B.A., Pan, Y.X., Zhu, R., Deng, C., Chen, F., 2004. Grain sizes of susceptibility and anhysteretic remanent magnetization carriers in Chinese loess/paleosol sequences. Journal of Geophysical Research 109, B03101.Google Scholar
Liu, Q., Deng, C., Torrent, J., Zhu, R., 2007. Review of recent developments in mineral magnetism of the Chinese loess. Quaternary Science Reviews 26, 368385.CrossRefGoogle Scholar
Liu, Q., Deng, C., Yu, Y., Torrent, J., Jackson, M. J., Banerjee, S. K., Zhu, R., 2005. Temperature dependence of magnetic susceptibility in an argon environment: Implications for pedogenesis of Chinese loess/palaeosols. Geophysical Journal International, 161, 102112.CrossRefGoogle Scholar
Liu, T., Ding, Z., 1998. Chinese loess and the paleomonsoon. Annual Review of Earth and Planetary Sciences 26, 111145.CrossRefGoogle Scholar
Liu, X., Liu, Z., Lu, B., Marković, S.B., Chen, J., Guo, H., Ma, M., Zhao, G., Feng, H., 2013. The magnetic properties of Serbian loess and its environmental significance. China Science Bulletin 58, 353363.CrossRefGoogle Scholar
Maher, B.A., 1998. Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 137, 2554.CrossRefGoogle Scholar
Maher, B.A., 2016. Palaeoclimatic records of the loess/palaeosol sequences of the Chinese Loess Plateau. Quaternary Science Reviews 154, 2384.CrossRefGoogle Scholar
Maher, B.A., Alekseev, A., Alekseeva, T., 2003. Magnetic mineralogy of soils across the Russian Steppe: climatic dependence of pedogenic magnetite formation. Palaeogeography, Palaeoclimatology, Palaeoecology 210, 321341.CrossRefGoogle Scholar
Maher, B.A., Thompson, R., 1991. Mineral magnetic record of Chinese loess and paleosols. Geology 19, 36.2.3.CO;2>CrossRefGoogle Scholar
Maher, B.A., Thompson, R., 1995. Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols. Quaternary Research 44, 383391.CrossRefGoogle Scholar
Marković, S.B., Hambach, U., Catto, N., Jovanović, M., Buggle, B., Machalett, B., Zöller, L., Glaser, B. Frechen, M., 2009. The middle and late Pleistocene loess- paleosol sequences at Batajanica, Vojvodina, Serbia. Quaternary International 198, 255266.CrossRefGoogle Scholar
Marković, S.B., Hambach, U., Stevens, T., Jovanović, M., O'Hara-Dhand, K., Basarin, B., Lu, H., et al. , 2012. Loess in the Vojvodina region (northern Serbia): an essential link between European and Asian Pleistocene environments. Netherlands Journal of Geosciences 91, 173188.CrossRefGoogle Scholar
Marković, S.B., Hambach, U., Stevens, T., Kukla, G.J., Heller, F., McCoy, W.D., Oches, E.A., Buggle, B., Zöller, L., 2011. The last million years recorded at the Stari Slankamen (Northern Serbia) loess-palaeosol sequence: revised chronostratigraphy and long-term environmental trends. Quaternary Science Reviews 30, 11421154.CrossRefGoogle Scholar
Marković, S.B., Stevens, T., Kukla, G.J., Hambach, U., Fitzsimmons, K.E., Gibbard, P., Buggle, B., et al. , 2015. Danube loess stratigraphy— towards a pan-European loess stratigraphic model. Earth Science Reviews 148, 228258.CrossRefGoogle Scholar
Mullins, C.E., 1977. Magnetic susceptibility of the soil and its significance in soil science: a review. Journal of Soil Science 28, 223246.CrossRefGoogle Scholar
Muxworthy, A.R., Dunlop, D.J., 2002. First-order reversal curve (FORC) diagrams for pseudo-single-domain magnetites at high temperature. Earth and Planetary Science Letters 203, 369382.CrossRefGoogle Scholar
Necula, C., Dimofte, D., Panaiotu, C., 2015. Rock magnetism of a loess-palaeosol sequence from the western Black Sea shore (Romania). Geophysical Journal International 202, 17331748.CrossRefGoogle Scholar
Nie, J., King, J., Fang, X., 2008. Link between benthic oxygen isotopes and magnetic susceptibility in the red-clay sequence on the Chinese Loess Plateau. Geophysical Research Letters 35. https://doi.org/10.1029/2007GL032817.CrossRefGoogle Scholar
Obreht, I., Zeeden, C., Hambach, U., Veres, D., Marković, S.B., Bösken, J., Svirčev, Z., Bačević, N., Gavrilov, M.B., Lehmkuhl, F., 2016. Tracing the influence of Mediterranean climate on Southeastern Europe during the past 350,000 years. Scientific Reports 6, 36334.CrossRefGoogle ScholarPubMed
Oches, E., Banerjee, S.K., 1996. Rock-magnetic proxies of climate change from loess- paleosol sediments of the Czech Republic. Studia Geophysica et Geodaetica 40, 287301.CrossRefGoogle Scholar
Oldfield, F., Hao, Q., Bloemendal, J., Gibbs-Eggar, Z., Patil, S., Guo, Z., 2009. Links between particle size and magnetic grain size: general observations and some implications for Chinese loess studies. Sedimentology 56, 20912106.CrossRefGoogle Scholar
Özdemir, Ö., Dunlop, D.J., 1993. The effect of oxidation on the Verwey transition in magnetite. Geophysical Research Letters 20, 16711674.CrossRefGoogle Scholar
Peng, S., Hao, Q., Oldfield, F., Guo, Z., 2014. Release of iron from chlorite weathering and links to magnetic enhancement in Chinese loess deposits. Catena 117, 4349.CrossRefGoogle Scholar
Pike, C. R., Roberts, A. P., Dekkers, M. J., Verosub, K. L., 2001. An investigation of multi-domain hysteresis mechanisms using FORC diagrams. Physics of the Earth and Planetary Interiors 126, 1125.CrossRefGoogle Scholar
Radaković, M.G., Gavrilov, M.B., Hambach, U., Schaetzl, R.J., Tošić, I., Ninkov, J., Vasin, J., Marković, S.B., 2019. Quantitative relationships between climate and magnetic susceptibility of soils on the Bačka Loess Plateau (Vojvodina, Serbia). Quaternary International 502, 8594.CrossRefGoogle Scholar
Roberts, A.P., Heslop, D., Zhao, X., Pike, C.R., 2014. Understanding fine magnetic particle systems through use of first-order reversal curve (FORC) diagrams. Reviews of Geophysics 52, 557602.CrossRefGoogle Scholar
Roberts, A.P., Pike, C.R., Verosub, K.L., 2000. First-order reversal curve diagrams: a new tool for characterizing the magnetic properties of natural samples. Journal of Geophysical Research 105, 2846128475.CrossRefGoogle Scholar
Roberts, A.P., Tauxe, L., Heslop, D., Zhao, X., Jiang, Z., 2018. A critical appraisal of the “Day” diagram. Journal of Geophysical Research: Solid Earth 123, 26182644.Google Scholar
Sartori, M., Heller, F., Forster, T., Borkovec, M., Vincent, E., 1999. Magnetic properties of loess grain size fractions from the section at Paks (Hungary). Physics of the Earth and Planetary Interiors 116, 5364.CrossRefGoogle Scholar
Schaetzl, R.J., Bettis, E.A., Crouvi, O., Fitzsimmons, K.E., Grimley, D.A., Hambach, U., Lehmkuhl, F., et al. 2018. Approaches and challenges to the study of loess—introduction to the loessfest special issue. Quaternary Research 89, 563618.CrossRefGoogle Scholar
Song, Y., Guo, Z., Marković, S., Hambach, U., Deng, C., Chang, L., Wu, J., Hao, Q., 2018. Magnetic stratigraphy of the Danube loess: a composite Titel-Stari Slankamen loess section over the last one million years in Vojvodina, Serbia. Journal of Asian Earth Sciences 155, 6880.CrossRefGoogle Scholar
Song, Y., Hao, Q., Ge, J., Zhao, D.., Zhang, Y., Li, Q., Zuo, X., , Y., Wang, P., 2014. Quantitative relationships between magnetic enhancement of modern soils and climatic variables over the Chinese Loess Plateau. Quaternary International 334–335, 119131.CrossRefGoogle Scholar
Spassov, S., Heller, F., Kretzschmar, R., Evans, M. E., Yue, L. P., Nourgaliev, D. K., 2003. Detrital and pedogenic magnetic mineral phases in the loess/palaeosol sequence at Lingtai (central Chinese Loess Plateau). Physics of the Earth and Planetary Interiors 140, 255275.CrossRefGoogle Scholar
Sümegi, P., Gulyás, S., Molnár, D., Sümegi, B.P., Almond, P. C., Vandenberghe, J., Zhou, L., et al. , 2018. New chronology of the best developed loess/paleosol sequence of Hungary capturing the past 1.1 Ma: implications for correlation and proposed pan-Eurasian stratigraphic schemes. Quaternary Science Reviews 191, 144166.CrossRefGoogle Scholar
Tauxe, L., 2010. Essentials of Paleomagnetism. University of California Press, Berkeley, pp. 143146.CrossRefGoogle Scholar
Taylor, S.N., Lagroix, F., Rousseau, D-D., Antoine, P., 2014. Mineral magnetic characterization of the Upper Pleniglacial Nußloch loess sequence (Germany): an insight into local environmental processes. Geophysical Journal International 199, 14631480CrossRefGoogle Scholar
Thompson, R., Oldfield, F., 1986. Environmental Magnetism. Allen and Unwin, London, pp. 2187.CrossRefGoogle Scholar
Torrent, J., Liu, Q., Bloemendal, J., Barrón, V., 2007. Magnetic enhancement and iron oxides in the Upper Luochuan loess–paleosol sequence, Chinese Loess Plateau. Soil Science Society of America Journal 71, 15701578.CrossRefGoogle Scholar
Újvári, G., Varga, A., Raucsik, B., Kovács, J., 2014. The Paks loess–paleosol sequence: A record of chemical weathering and provenance for the last 800 ka in the mid-Carpathian basin. Quaternary International 319, 2237.CrossRefGoogle Scholar
Van Velzen, A.J., Dekkers, M.J., 1999a. The incorporation of thermal methods in mineral magnetism of loess–paleosol sequences: a brief overview. Chinese Science Bulletin 44 (suppl. 1), 5363.Google Scholar
Van Velzen, A. J., Dekkers, M. J., 1999b. Low-temperature oxidation of magnetite in loess–paleosol sequences: a correction of rock magnetic parameters. Studia Geophysica et Geodaetica 43, 357375.CrossRefGoogle Scholar
Varga, A., Újvári, G., Raucsik, B., 2011. Tectonic versus climatic control on the evolution of a loess–paleosol sequence at Beremend, Hungary: an integrated approach based on paleoecological, clay mineralogical, and geochemical data. Quaternary International 240, 7186.CrossRefGoogle Scholar
Wu, F., Fang, X., Ma, Y., An, Z., Li, J., 2004. A 1.5 Ma sporopollen record of paleoecologic environment evolution in the central Chinese loess plateau. Chinese Science Bulletin 49, 295302.CrossRefGoogle Scholar
Xie, Q., Chen, T., Xu, X., Sun, Y., 2012. Organic matter record of ifeng eolian deposits and its decipherment for the paleoclimatic proxy of magnetic susceptibility of the loess-red clay sequences in Chinese Loess Plateau [In Chinese with English abstract.]. Quaternary Sciences 32, 709719.Google Scholar
Zan, J.B., Fang, X.M., Yan, M.D., Li, B.S., 2017. New insights into the palaeoclimatic interpretation of the temperature dependence of the magnetic susceptibility and magnetization of Mid-late Pleistocene loess/palaeosols in Central Asia and the Chinese Loess Plateau. Geophysical Journal International 208, 663673.CrossRefGoogle Scholar
Zan, J., Fang, X., Li, X., Yan, M., Kang, J., 2019. Long-term variations in the lithogenic susceptibility of Chinese eolian deposits since the late Pliocene. Geophysical Research Letters 46, 726735.CrossRefGoogle Scholar
Zan, J., Fang, X., Nie, J., Teng, X., Yang, S., 2012. Rock magnetism in loess from the middle Tian Shan: implications for paleoenvironmental interpretations of magnetic properties of loess deposits in Central Asia. Geochemistry, Geophysics, Geosystems 13, Q10Z50CrossRefGoogle Scholar
Zeeden, C., Hambach, U., Obreht, I., Hao, Q., Abels, H., Veres, D., Lehmkuhl, F., Gavrilov, M., Marković, S.B., 2018. Patterns and timing of loess-palaeosol transitions in Eurasia: constraints for palaeoclimate studies. Global and Planetary Change 162, 17.CrossRefGoogle Scholar
Zhou, L., Oldfield, F., Wintle, A.G., Robinson, S.G., Wang, J., 1990. Partly pedogenic origin of magnetic variations in Chinese loess. Nature 346, 737739.CrossRefGoogle Scholar
Supplementary material: PDF

Namier et al. supplementary material

Figure S1

Download Namier et al. supplementary material(PDF)
PDF 217 KB
Supplementary material: PDF

Namier et al. supplementary material

Figure S2

Download Namier et al. supplementary material(PDF)
PDF 291 KB
2
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Mineral magnetic properties of loess–paleosol couplets of northern Serbia over the last 1.0 Ma
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Mineral magnetic properties of loess–paleosol couplets of northern Serbia over the last 1.0 Ma
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Mineral magnetic properties of loess–paleosol couplets of northern Serbia over the last 1.0 Ma
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *