Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-29T03:51:22.665Z Has data issue: false hasContentIssue false

Low-latitude “dusty events” vs. high-latitude “icy Heinrich Events”

Published online by Cambridge University Press:  20 January 2017

Elsa Jullien*
EPOC, UMR 5805, Université Bordeaux I, 33405 Talence, France
Francis Grousset
EPOC, UMR 5805, Université Bordeaux I, 33405 Talence, France
Bruno Malaizé
EPOC, UMR 5805, Université Bordeaux I, 33405 Talence, France
Josette Duprat
EPOC, UMR 5805, Université Bordeaux I, 33405 Talence, France
Maria Fernanda Sanchez-Goni
EPOC, UMR 5805, Université Bordeaux I, 33405 Talence, France
Frédérique Eynaud
EPOC, UMR 5805, Université Bordeaux I, 33405 Talence, France
Karine Charlier
EPOC, UMR 5805, Université Bordeaux I, 33405 Talence, France
Ralph Schneider
Institut für Geowissenschaften, Christian-Albrechts-Universitaet, 10/24118 Kiel, Germany
Aloys Bory
PBDS, UMR 8110 CNRS, Université de Lille 1, 59655 Villeneuve d'Ascq, France
Viviane Bout
PBDS, UMR 8110 CNRS, Université de Lille 1, 59655 Villeneuve d'Ascq, France
Jose Abel Flores
Departamento de Geología, Universidad de Salamanca, 37008, Salamanca, Spain
*Corresponding author. Fax: +33 556 840 848.E-mail (E. Jullien).


It has been proposed that tropical events could have participated in the triggering of the classic, high-latitude, iceberg-discharge Heinrich events (HE). We explore low-latitude Heinrich events equivalents at high resolution, in a piston core recovered from the tropical north-western African margin. They are characterized by an increase of total dust, lacustrine diatoms and fibrous lacustrine clay minerals. Thus, low-latitude events clearly reflect severe aridity events that occurred over Africa at the Saharan latitudes, probably induced by southward shifts of the Inter Tropical Convergence Zone. At a first approximation, it seems that there is more likely synchronicity between the high-latitude Heinrich Events (HEs) and low-latitude events (LLE), rather than asynchronous behaviours.

Research Article
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Adegbie, A.T., Schneider, R.R., Rohl, U., Wefer, G.(2003). Glacial millennial-scale fluctuations in central African precipitation recorded in terrigenous sediment supply and freshwater signals offshore Cameroon.. Palaeogeography, Palaeoclimatology, Palaeoecology 197, 323333.CrossRefGoogle Scholar
Arz, H.W., Patzold, J., Wefer, G.(1998). Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from last-glacial marine deposits off Northeastern Brazil.. Quaternary Research 50, 157166.Google Scholar
Bard, E. (1988). Correction of AMS 14C ages measured on planktonic foraminifera: paleoceanographic implications.. Paleoceanography 3, 635645.Google Scholar
Bartov, Y., Goldstein, S.L., Stein, M., Enzel, Y.(2003). Catastrophic arid episodes in the Eastern Mediterranean linked with the North Atlantic Heinrich events.. Geology 31, 439442.Google Scholar
Bergametti, G., Gomes, L., Remoudaki, E., Desbois, M., Martin, D., Buat-Ménard, P.(1989). Present transport and deposition patterns of African dust to the north-western Mediterranean.. Leinen, M., Sarnthein, M. Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport Kluxer Academic, 227252.Google Scholar
Biscaye, P.E., Grousset, F.E., Revel, M., Van der Gaast, S., Zielinsky, G.A., Vaars, A., Kukla, G.(1997). Asian provenance of Last Glacial Maximum dust in the GISP-2 ice core, Summit, Greenland.. Journal of Geophysical Research 102, 2676526781.Google Scholar
Boyle, E.A. (1983). Chemical accumulation variations under the peru current during the past 130 kyr.. Journal of Geophysical Research 88, 76677680.Google Scholar
Broccoli, A.J., Dahl, K.A., Stouffer, R.J.(2006). Response of the ITCZ to northern hemisphere cooling.. Geophysical Research Letters 33, L01702 10.1029/2005GL024546.CrossRefGoogle Scholar
Broecker, W.S. (2003). Does the trigger for abrupt climate change reside in the ocean or in the atmosphere?.. Science 300, 15191522.CrossRefGoogle ScholarPubMed
Cane, M., Clement, A.C.(1999). A role for the tropical Pacific coupled ocean–atmosphere system on Milankovitch and millennial timescales. Part II: global impacts. Mechanisms of global climate change at millennial time scales.. Clark, P.U., Webb, R.S., Keigwin, L.D. Geophys. Monographs vol. 112, AGU, Washington.373383.Google Scholar
Coudé-Gaussen, G. ("-Gaussen, 1988). )Contribution à l'étude sédimentologique des poussières sahariennes et à leur identification dans les sédiments continentaux et marins.. Bulletin de la Societe Geologique de France 6, 10631072.Google Scholar
deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., Yarusinsky, M.(2000). Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing.. Quaternary Science Reviews 19, 347361.CrossRefGoogle Scholar
Elliot, M., Labeyrie, L., Dokken, T., Manthe, S.(2001). Coherent patterns of ice-rafted debris deposits in the Nordic regions during the last glacial (10–60 ka).. Earth and Planetary Science Letters 194, 151163.CrossRefGoogle Scholar
Grousset, F.E., Parra, M., Bory, A., Martinez, P., Bertrand, P., Shimmield, G., Ellam, R.M.(1998). Saharan wind regimes traced by the Sr–Nd isotopic composition of subtropical Atlantic sediments: Last Glacial Maximum vs today.. Quaternary Science Reviews 17, 395409.Google Scholar
Heinrich, H. (1988). Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years.. Quaternary Research 29, 142152.Google Scholar
Holtzapffel, T. (1985). Les minéraux argileux: préparation, analyse diffractométrique et détermination.. Société Géologique du nord, Villeneuve d'Ascq136 p.Google Scholar
Husar, R.B., Prospero, J.M., Stowe, L.L.(1997). Characterization of tropospheric aerosols over the oceans with the NOAA Advanced Very High Resolution Radiometer Optical Thickness Operational Product.. Journal of Geophysical Research 102, 889909.Google Scholar
Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., Shackleton, N.J.(1984). The orbital theory of a Pleistocene climate: support from revised chronology of the marine δ18O record.. Berger, A., Imbrie, J., Hays, J., Kukla, G., Saltzman, B. Milankovitch and Climate, Riedel, D, Dordrecht.269305.Google Scholar
Ivanochko, T.S., Ganeshram, R.S., Brummer, G.-J.A., Ganssen, G., Jung, S.J.A., Moreton, S.G., Kroon, D.(2005). Variations in tropical convection as an amplifier of global climate change at the millennial scale.. Earth and Planetary Science Letters 235, 302314.CrossRefGoogle Scholar
Jansen, J.H.F., Van der Gaast, S.J., Koster, B., Vaars, A.J.(1998). CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores.. Marine Geology 151, 143153.CrossRefGoogle Scholar
Johnsen, S., Dahl-Jensen, D., Gundestrup, N., Steffensen, J.P., Clausen, H.B., Miller, H., Masson-Delmotte, V., Sveinbjörnsdottir, A.E., White, J.(2001). Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP.. Journal of Quaternary Science 16, 299307.Google Scholar
Jullien, E., Grousset, F.E., Hemming, S.R., Peck, V.L., Hall, I.R., Jeantet, C., Billy, I.(2006). Contrasting conditions preceding MIS3 and MIS2 Heinrich events.. Global and Planetary Change 54, 225238.CrossRefGoogle Scholar
Kolla, V., Biscaye, P.E., Hanley, A.F.(1979). Distribution of quartz in late Quaternary Atlantic sediments in relation to climate.. Quaternary Research 11, 261277.CrossRefGoogle Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., Shackleton, N.J.(1987). Age dating and the orbital theory of the Ice Ages: development of a high-resolution 0 to 300,000-year chronostratigraphy.. Quaternary Research 27, 129.CrossRefGoogle Scholar
Matthewson, A.P., Shimmield, G., Kroon, D., Fallick, A.E.(1995). A 300 kyr high resolution aridity record of the North African continent.. Paleoceanography 10, 677692.Google Scholar
Mayewski, P.A., Meeker, L.D., Whitlow, S., Twickler, M.S., Morrison, M.C., Bloomfield, P., Bond, G., Alley, R.B., Gow, A.J., Grootes, P.M., Meese, D., Ram, M., Taylor, K.C., Wumkes, W.(1994). Changes in atmospheric circulation and ocean ice cover over the North Atlantic during the last 41,000 years.. Science 263, 17471751.Google Scholar
McAyeal, D.R. (1993). Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic' Heinrich events.. Paleoceanography 8, 775784.CrossRefGoogle Scholar
Mie, G. (1908). Beiträge zur optik trüber Medien, speziell kolloidaler Metallösungen.. Annalen der Physik 377752.CrossRefGoogle Scholar
Moyes, J., Duplantier, J., Duprat, J., Faugeres, J.C., Pujol, C., Pujos-Lamy, A., Tastet, J.P.(1976). Etude stratigraphique et sédimentologique. Geochimie organique des sédiments marins profonds, Orgon II, Atlantique N.. Brésil, E. C.N.R.S., Paris.105156.Google Scholar
Naughton, F., Sanchez Goni, M.F., Desprat, S., Turon, J.L., Duprat, J., Malaize, B., Joli, C., Cortijo, E., Drago, T., Freitas, M.C.(2007). Present-day and past (last 25 000 years) marine pollen signal off western Iberia.. Marine Micropaleontology 62, 91114.CrossRefGoogle Scholar
Peterson, L.C., Haug, G.H., Hughen, K.A., Röhl, U.(2000). Rapid changes in the hydrologic cycle of the tropical Atlantic during the last Glacial.. Science 290, 19471951.CrossRefGoogle ScholarPubMed
Rea, D.K. (1994). The paleoclimatic record provided by Eolian deposition in the deep sea: the geologic history of wind.. Review of Geophysics 32, 159195.Google Scholar
Ruddiman, W.F. (1977). Late Quaternary deposition of ice-rafted sand in the sub-polar North Atlantic (lat. 40° to 65°).. Geological Society of America Bulletin 88, 18131821.2.0.CO;2>CrossRefGoogle Scholar
Sarnthein, M. (1978). Sand deserts during glacial maximum and climatic optimum.. Nature 272, 4346.Google Scholar
Schütz, L., Sebert, M.("tz and Sebert, 1987). Mineral aerosols and source identification.. Journal of Aerosol Sciences 18, 110.Google Scholar
Singer, A., Galan, E.(1984). Palygorskite–sepiolite: occurrences, genesis and uses.. Developments in Sedimentology Elsevier, Amsterdam.352 p.Google Scholar
Skinner, L.C., McCave, I.N.(2003). Analysis and modelling of gravity- and piston coring based on soil mechanics.. Marine Geology 199, 181204.Google Scholar
Stuiver, M., Reimer, P., and R.W., Reimer (2005). CALIB 5.0..Google Scholar
Washington, R., Todd, M.C., Lizcano, G., Tegen, I., Koren, I., Ginoux, P., Engelstaedter, S., Bristow, C., Zender, C.S., Goudie, A., Warren, A., Prospero, J.M.(2006). Links between topography, wind, deflation, lakes and dust: the case of the Bodélé Depression, Chad.. Geophysical Research Letters 33, L09401,10.1029/2006GL025827.CrossRefGoogle Scholar