Hostname: page-component-7d8f8d645b-xmxxh Total loading time: 0 Render date: 2023-05-28T20:59:37.337Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Late Holocene forest contraction and fragmentation in central Africa

Published online by Cambridge University Press:  12 December 2017

Jean Maley*
Institute de Recherche pour le Développement (IRD), Montpellier Research Center, Agropolis, 34394, cedex 5, France Département Paléoenvironnements, Institut des Sciences de l'Evolution-Montpellier (ISEM-CNRS), Université de Montpellier, F-34095, cedex 5, France
Charles Doumenge
UPR, Forêts et Societés, Centre International de Recherche Agronomique pour le Développement (CIRAD), Campus International de Baillarguet; Université de Montpellier, F-34398, cedex 5, France
Pierre Giresse
Centre de Formation et de Recherche sur les Environnements Méditerranéens (CEFREM), Université Via Domitia, Perpignan 66100, France
Gil Mahé
Institute de Recherche pour le Développement (IRD), Montpellier Research Center, Agropolis, 34394, cedex 5, France Institut de Recherche pour le Développement (IRD) HydroSciences, Université de Montpellier, F-34095, cedex 5, France
Nathalie Philippon
Institut des Géosciences de l'Environnement, CNRS, INP, IRD, Université de Grenoble Alpes, 38058 Grenoble cedex 9, France
Wannes Hubau
Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium
Michel O. Lokonda
Institut Facultaire des Sciences Agronomiques de Yangambi, IFA, Democratic Republic of the Congo Université Kisangani, R408, Democratic Republic of the Congo
John M. Tshibamba
Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium Faculté de Gestion des Ressources Naturelles et Renouvelables, Université Kisangani, R408, Democratic Republic of the Congo
Alex Chepstow-Lusty
Department of Geography, University of Sussex, Brighton, BN2 4GJ, United Kingdom
*Corresponding author at: Institute de Recherche pour le Développement (IRD), Montpellier Research Center, Agropolis, 34394, cedex 5, France, and Département Paléoenvironnement, Institut des Sciences de l'Evolution (ISEM-CNRS) Université de Montpellier, F-34095, cedex 5, France. E-mail address: (J. Maley).


During the warmer Holocene Period, two major climatic crises affected the Central African rainforests. The first crisis, around 4000 cal yr BP, caused the contraction of the forest in favor of savanna expansion at its northern and southern periphery. The second crisis, around 2500 cal yr BP, resulted in major perturbation at the forest core, leading to forest disturbance and fragmentation with a rapid expansion of pioneer-type vegetation, and a marked erosional phase. The major driver of these two climatic crises appears to be rapid sea-surface temperature variations in the equatorial eastern Atlantic, which modified the regional atmospheric circulation. The change between ca. 2500 to 2000 cal yr BP led to a large increase in thunderstorm activity, which explains the phase of forest fragmentation. Ultimately, climatic data obtained recently show that the present-day major rise in thunderstorms and lightning activity in Central Africa could result from some kind of solar influence, and hence the phase of forest fragmentation between ca. 2500 to 2000 cal yr BP may provide a model for the present-day global warming-related environmental changes in this region.

Tribute to Daniel Livingstone and Paul Colinvaux
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Ashcroft, M., 2010. Identifying refugia from climate change. Journal of Biogeography 37, 14071413.Google Scholar
Aubréville, A., 1957. Echos du Congo. Bois et Forêts Tropiques 51, 2839.Google Scholar
Bayon, G., Dennielou, B., Etoubleau, J., Ponzevera, E., Toucanne, S., Bernell, S., 2012. Intensifying weathering and land use in Iron Age Central Africa. Science 335, 12191222.CrossRefGoogle ScholarPubMed
Betbeder, J., Gond, V., Frappart, F., Baghdadi, N.N., Briant, G., Bartholomé, E., 2014. Mapping of Central Africa forested wetlands using remote sensing. IEEE J. Selected Topics Applied Earth Observations & Remote Sensing 7, 531542.CrossRefGoogle Scholar
Binet, D., Gobert, B., Maloueki, L., 2001. El Nino-like warm events in the Eastern Atlantic (6°N, 20°S) and fish availability from Congo to Angola (1964–1999). Aquatic Living Resources 14, 99113.CrossRefGoogle Scholar
Bostoen, K., 2007. Pots, words and the Bantu problem: on lexical reconstruction and early African history. Journal of African History 48, 173199.CrossRefGoogle Scholar
Bostoen, K., Clist, B., Doumenge, C., Grollemund, R., Hombert, J.M, Muluwa, J.K., Maley, J., 2015. Middle to Late Holocene paleoclimatic change and early Bantu expansion in the rain forests of Western Central Africa. Current Anthropology 56, 354384.CrossRefGoogle Scholar
Bremond, L., Bodin, S.C., Bentaleb, I., Favier, C., Canal, S., 2017. Past tree cover of the Congo Basin recovered by phytoliths and δ 13 C along soil profiles. Quaternary Internat 434, B: 91101. http// Scholar
Brncic, T.M., Willis, K.J., Harris, D.J., Telfer, M.W., Bailey, R.M., 2009. Fire and climate change impacts on lowland forest composition in northern Congo during the last 2580 years from palaeoecological analyses of a seasonally flooded swamp. The Holocene 19, 7989.CrossRefGoogle Scholar
Buisson, A., 1985. Etudes et échos climatologiques. Une anomalie climatique au Gabon en 1984. La Météorologie 8, 3645.Google Scholar
Butzer, K.W., 1980. Pleistocene history of the Nile valley in Egypt and Lower Nubia. In William, M.A.J, Faure, H. (Eds.), The Sahara and the Nile. Quaternary environments and Prehistoric occupation in Northern Africa. Balkema Publications, Rotterdam, pp. 253280.Google Scholar
Chase, B.M., Meadows, M.E., Carr, A.S., Reimer, P.J., 2010. Evidence for progressive Holocene aridification in Southern Africa recorded in Namibian hyrax middens: Implications for African Monsoon dynamics and the “African Humid Period. Quaternary Research 74, 3645.CrossRefGoogle Scholar
Christian, H.J., Blakeslee, R.J., Boccippio, D.J., Boeck, W.L., Buechler, D.E., Driscoll, K.T., Goodman, S.J., Hall, J.M., Koshak, W.J., Mach, D.M., Stewart, M.F., 2003. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. Journal of Geophysical Research: Atmospheres 108, ACL 4-1ACL 4-15. Scholar
Cochrane, M.A., 2003. Fire science for rainforests. Nature 421, 913919.CrossRefGoogle ScholarPubMed
Collier, A.B., Hughes, A.R., 2011. Lightning and the African ITCZ. Journal of Atmospheric Solar-Terrestrial Physics 73, 23922398.CrossRefGoogle Scholar
Colyn, M., Gautier-Hion, A, Verheyen, W., 1991. A re-appraisal of palaeoenvironmental history in Central Africa: evidence for a major fluvial refuge in the Zaire basin. Journal of Biogeography 18, 403407.CrossRefGoogle Scholar
Cook, K.H., Vizy, E.K., 2016. The Congo Basin Walker circulation: dynamics and connections to precipitation. Climate Dynamics 47, 697717.CrossRefGoogle Scholar
Dalibard, M., Popescu, S.M., Maley, J., Baudin, F., Melinte-Dobrinescu, M., Pittet, B., Marsset, T., Dennielou, B., Droz, L., Suc, J.P., 2014. High resolution vegetation history of West Africa during the last 145 ka. Geobios 47, 183198.CrossRefGoogle Scholar
Dargie, G.C., Lewis, S.L., Lawson, I.T., Mitchard, E.T., Page, S.E., Bocko, Y.E., Ifo, S.A., 2017. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 8690.CrossRefGoogle ScholarPubMed
Delecluse, P., Servain, J., Levy, C., Arpe, K., Bengtsson, L., 1994. On the connection between the 1984 Atlantic warm event and the 1982–1983 ENSO. Tellus A 46, 448464.CrossRefGoogle Scholar
Delègue, M.A., Fuhr, M., Schwartz, D., Mariotti, A., Nasi, R., 2001. Recent origin of a large part of the forest cover in the Gabon coastal area based on stable carbon isotope data. Oecologia 129, 106113.CrossRefGoogle ScholarPubMed
Desjardins, T., Turcq, B., Nguetnkam, J.P., Achoundong, G., Mandeng-Yogo, M., Cetin, F., Lézine, A.M., 2013. Comptes Rendus Geoscience 345, 266271.CrossRefGoogle Scholar
De Wasseige, C., Marshall, M., Mahé, G., Laraque, A., 2015. Interactions between climate characteristics and forests. In de Wasseige, C., Tadoum, M., Eba’a Atyi, R., Doumenge, C. (Eds.), The Forests of the Congo Basin: Forests and Climate Change. Weyrich, Belgium, pp. 5364.Google Scholar
Doumenge, C., 1990. Contribution à l'étude des structures de populations d'arbres des forêts d’Afrique centrale : exemples du Gabon, Cameroun et Congo. PhD Thesis. Département Biologie et Écologie Université de Montpellier. Physiologie et biologie des organismes et populations.Google Scholar
Doumenge, C., 2012. Gilbertiodendron dewevrei (De Wild.) J.Léonard. PROTA (Plant Resources of Tropical Africa) (accessed December 20, 2016).,dewevrei&p=Gilbertiodendron+dewevrei#Synonyms.Google Scholar
Doumenge, C., Gonmadje, C., Doucet, J.L., Maley, J., 2014. The Sangha River Interval: myth or biogeographic reality. In XX AETFAT Congress, Stellenbosch, South Africa, Abstract booklet, p. 8.Google Scholar
Duminil, J., Mona, S., Mardulyn, P., Doumenge, C., Walmacq, F., Doucet, J.L., Hardy, O.J., 2015. Late Pleistocene molecular dating of past population fragmentation and demographic changes in African rain forest tree species supports the forest refuge hypothesis. Journal of Biogeography 42, 14431454.CrossRefGoogle Scholar
Dupont, L., Jahns, S., Marret, F., Ning, S., 2000. Vegetation change in equatorial West Africa: time-slices for the last 150 ka. Palaeogeography, Palaeoclimatology, Palaeoecology 155, 95122.CrossRefGoogle Scholar
Eggert, M., 1987. Imbonga and Batalimo: ceramic evidence for early settlement of the Equatorial Rainforest. African Archaeological Review 5, 129145.CrossRefGoogle Scholar
Elenga, H., Maley, J., Vincens, A., Farrera, I., 2004. Palaeoenvironments, palaeoclimates and landscape development in Central Equatorial Africa: a review of key sites covering the last 25 kyrs. In Battarbee, R.W., Gasse, F., Stickley, C.E. (Eds.), Past Climate Variability Through Europe and Africa. Kluwer Academic Press, CITY. pp. 181198.CrossRefGoogle Scholar
Elenga, H., Schwartz, D., Vincens, A., Bertaux, J., de Namur, C., Martin, L., Servant, M., 1996. Diagramme pollinique holocène du lac Kitina (Congo): mise en évidence de changements paléobotaniques et paléoclimatiques dans le massif forestier du Mayombe. Comptes Rendus de l’Académie des Sciences, Série 2a: Sciences de la Terre et des Planètes 323, 403410.Google Scholar
Emile‐Geay, J., Cane, M., Seager, R., Kaplan, A., Almasi, P., 2007. El Niño as a mediator of the solar influence on climate. Paleoceanography 22, 16.CrossRefGoogle Scholar
Fairhead, J., Leach, M., 1998. Reframing deforestation. Global analyses and local realities with studies in West Africa. Global Environmental Changes Series. Routledge, London.Google Scholar
Fay, J. M., 1992. Ecological and conservation implications of development options for the Dzanga-Sangha special reserve and the Dzanga-Ndoki National Park, Yobe-Sangha, Central African Republic. Report to GTZ, German Tech. Coop. Agency, Bonn, Germany.Google Scholar
Fay, J.M., 1993. Ecological and conservation implications of development options for the Dzanga-Sangha special reserve and the Dzanga-Ndoki National Park, Yobe-Sangha, Central African Republic. Report to GTZ, Mission Forestière Allemande, Coopération Technique Allemande.Google Scholar
Fay, J.M., 1997. The Ecology, Social Organization, Populations, Habitat and History of the Western Lowland Gorilla. PhD dissertation. Department of Anthropology, Washington University, Saint Louis, Missouri.Google Scholar
Gérard, P., 1960. Etude écologique de la forêt dense à Gilbertiodendron dewevrei dans la région de l’Uélé. Mémoire INEAC, Sér. Sci 87, 159 p.Google Scholar
Gillet, J.F., 2013. Les Forêts à Marantaceae au sein de la Mosaïque forestière du nord de la Rép. du Congo: origines et Modalités de Gestion. PhD Thesis. Département AGROBIOCHEM, Université de Liège – Gembloux Agro-Bio Tech, Liège, Belgium.Google Scholar
Giresse, P., Bongo-Passi, G., Delibrias, G., Duplessy, J.C., 1982. La lithostratigraphie des sédiments hémipélagiques du delta du fleuve Congo et ses implications sur les paléoclimats de la fin du Quaternaire. Bulletin de la Sociéte Géologique de France 24, 803815.CrossRefGoogle Scholar
Giresse, P., Makaya, M., Maley, J., Ngomanda, A., 2009. Late-Holocene equatorial environments inferred from deposition processes, carbon isotopes of organic matter, and pollen in three shallow lakes of Gabon, west-central Africa. Journal of Paleolimnology 41, 369392.CrossRefGoogle Scholar
Giresse, P., Maley, J., Kossoni, A., 2005. Sedimentary environmental changes and millennial climatic variability in a tropical shallow lake (Lake Ossa, Cameroon) during the Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 218, 257285.CrossRefGoogle Scholar
Gond, V., Fayolle, A., Pennec, A., Cornu, G., Mayaux, P., Camberlin, P., Doumenge, C., Fauvet, N., Gourlet-Fleury, S., 2013. Vegetation structure and greenness in Central Africa from MODIS multi-temporal data. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 368 ScholarPubMed
Gonmadje, C.F., Doumenge, C., Sunderland, T., Balinga, M., Sonké, B., 2012. Analyse phytogéographique des forêts d’Afrique centrale: le cas du massif de Ngovayang (Cameroun). Plant Ecology and Evolution 145, 152164.CrossRefGoogle Scholar
Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, K., Cubasch, U., et al. 2010. Solar influences on climate. Reviews of Geophysics 48, 153.CrossRefGoogle Scholar
Guillot, B., 1986. Températures de Surface de la Mer et pluviosité autour du Golfe de Guinée. Veille Climatique Satellitaire 6, 1314.Google Scholar
Hardy, O.J., Born, C., Budde, K., Daïnou, K., Dauby, G., Duminil, J., Eben, B.K., et al. 2013. Comparative phylogeography of African rain forest trees: a review of genetic signatures of vegetation history in the Guineo-Congolian region. Comptes Rendus Geoscience 345, 284296.CrossRefGoogle Scholar
Hart, T.B, Hart, J.A., Dechamps, R., Fournier, M., Ataholo, M., 1996. Changes in forest composition over the last 4000 years in the Ituri basin, Zaire. In: Van der Maesen, L.G., Van der Burgt, X.M., De Rooy, J.M. (Eds.), The Biodiversity of African Plants. Kluwer Academic Press, Dordrecht, Germany, pp. 545–5563.CrossRefGoogle Scholar
Hecketsweiler, P., Doumenge, C., Mokoko Ikonga, J., 1991. Le Parc National d’Odzala, Congo. UICN – Union mondiale pour la nature, Gland, Switzerland.Google Scholar
Hisard, P., 1980. Observation de réponses de type “El Niño” dans l’Atlantique tropical oriental, Golfe de Guinée. Oceanologica Acta 3, 6978.Google Scholar
Hubau, W., Van den Bulcke, J., Kitin, P., Mees, F., Baert, G., Verschuren, D., Nsenga, L., Van Acker, J., Beeckman, H., 2013. Ancient charcoal as a natural archive for paleofire regime and vegetation change in the Mayumbe, Democratic Republic of the Congo. Quaternary Research 80, 326340.CrossRefGoogle Scholar
Kabonyi, C.N, Roche, E., 2015a. Six millénaires d'évolution environnementale sur la dorsale occidentale du Lac Kivu au Mont Kahuzi (RD-Congo). Analyse palynologique de la séquence sédimentaire de Ngushu. Geo-Eco-Trop . Journal 39, 126.Google Scholar
Kabonyi, C.N, Roche, E., Gerrienne, P., 2015b. Paléoenvironnements et paléoclimats durant le Pléistocène supérieur et l’Holocène sur la dorsale occidentale du Kivu en République Démocratique du Congo. European Scientific . Journal 11, 3863.Google Scholar
Kouka, L., 2002. Recherches sur la flore, la structure et la dynamique des forêts du Parc National d’Odzala (Congo-Brazzaville). Acta Botanica Gallica 149, 225235.CrossRefGoogle Scholar
Lachniet, M.S., Bernal, J.P., Asmerom, Y., Polyak, V., Piperno, D., 2012. A 2400 yr Mesoamerican rainfall reconstruction links climate and cultural change. Geology 40, 259262.CrossRefGoogle Scholar
Leal, M., 2001. Microrefugia, small scale ice age forest remnants. Systematic and Geography of Plants 71, 10731077.CrossRefGoogle Scholar
Leduc, G., Herbert, C.T, Blanz, T., Martinez, P., Schneider, R., 2010. Contrasting evolution of sea surface temperature in the Benguela upwelling system under natural and anthropogenic climate forcings. Geophysical Research Letters 37, L20705. Scholar
Léonard, J., 1953. Les forêts du Congo belge. Les Naturalistes Belges 34, 5265.Google Scholar
Letouzey, R., 1968. Etude phytogéographique du Cameroun. Encyclopédie Biologique. P. Lechevalier, Paris, p. 69.Google Scholar
Letouzey, R., 1985. Notice de la carte phytogéographique du Cameroun au 1/500.000. Institute de la Carte Internationale de la Végétation, Toulouse, France and Institut de Recherche Agronomique, Yaoundé, Cameroun.Google Scholar
Liénou, G., Mahé, G., Paturel, J.E., Servat, E., Sighomnou, D., Ecodeck, G.E., Dezetter, A., Dieulin, C., 2008. Changements des régimes hydrologiques en région équatoriale camerounaise: un impact du changement climatique en Afrique équatoriale?. Hydrological Sciences Journal, 53, 789801.CrossRefGoogle Scholar
Lokonda, M.O., 2017. Déterminisme de la dominance du Gilbertiodendron dewevrei (De Wild) J. Léonard en forêt tropicale humide: étude d’impact des propriétés physico-chimiques du sol et des perturbations paléo-environnementales. Cas de la réserve forestière de Yoko, Province de la Tshopo, R.D.C. Mémoire de Thèse. Département d’Ecologie et Gestion des Ressources Animales et Végétales, Université de Kisangani, Kisangani, Democratic Republic of the Congo.Google Scholar
Louis, J., Fouarge, J., 1949. Essences forestières et bois du Congo. Fascicule 6: Macrolobium dewevrei. Publications de l’Institute National pour l’Etude Agronomique du Congo Belge, Brussels.Google Scholar
Mahé, G., Citeau, J., 1993. Relations océan-atmosphère-continent dans l’espace africain de la mousson atlantique. Schéma général et cas particulier de 1984. Veille Climatique Satellitaire 44, 3454.Google Scholar
Mahé, G., Lienou, G., Descroix, L., Bamba, F., Paturel, J.E., Laraque, A., Meddi, M., et al. 2013. The rivers of Africa: witness of climate change and human impact on the environment. Hydrological Processes 27, 21052114.CrossRefGoogle Scholar
Mahé, G., Olivry, J.C., 1995. Variations des précipitations et des écoulements en Afrique de l’Ouest et Centrale de 1951 à 1989. Sécheresse 1, 109117.Google Scholar
Maley, J., 1987. Fragmentation de la forêt dense humide Africaine et extension des biotopes montagnards au Quaternaire récent: nouvelles données polliniques et chronologiques. Implications paléoclimatiques et biogéographiques. Palaeoecology of Africa 18, 307334.Google Scholar
Maley, J., 1992. Mise en évidence d'une péjoration climatique entre ca. 2500 et 2000 ans BP en Afrique tropicale humide. Bulletin de la Société Géologique de France 163, 363365.Google Scholar
Maley, J., 1996. The African rain forest - main characteristics of changes in vegetation and climate from the Upper Cretaceous to the Quaternary. In: Alexander, I.J., Swaine, M.D., Watling, R. (Eds.), Essays on the Ecology of the Guinea-Congo Rain Forest. Proceedings of the Royal Society of Edinburgh, Section B 104, 31–73.Google Scholar
Maley, J., 1999. L’expansion du palmier à huile (Elaeis guineensis) en Afrique Centrale au cours des trois derniers millénaires: nouvelles données et interprétations. In Bahuchet, S., Bley, D., Pagezy, H. (Eds.), L’homme et la Forêt Tropicale. Travaux Socièté Ecologie Humaine, Paris, pp. 237254.Google Scholar
Maley, J., 2000. Last Glacial Maximum lacustrine and fluviatile Formations in the Tibesti and other Saharan Mountains, and large scale climatic teleconnections linked to the activity of the Subtropical Jet Stream. Global and Planetary Change 26, 121136.CrossRefGoogle Scholar
Maley, J., 2001. La destruction catastrophique des forêts d’Afrique centrale survenue il y a environ 2500 ans exerce encore une influence majeure sur la répartition actuelle des formations végétales. Systematic and Geography of Plants 71, 777796.CrossRefGoogle Scholar
Maley, J., 2002. A catastrophic destruction of African forests about 2,500 years ago still exerts a major influence on present vegetation formations. Institute of Development Studies Bulletin 33, 1330.CrossRefGoogle Scholar
Maley, J., 2004. Les variations de la végétation et des paléoenvironnements du domaine forestier africain au cours du Quaternaire récent. In Renault-Miskovsky, J., Semah, A.M. (Eds.), L'évolution de la Végétation depuis deux millions d’années. Publ. Artcom Errance, Paris, pp. 143178.Google Scholar
Maley, J., 2010. Climate and palaeoenvironment evolution in north tropical Africa from the end of the Tertiary to the upper Quaternary. Palaeoecology of Africa 30, 227278.Google Scholar
Maley, J., 2012a. The fragmentation of the African rain forests during the third millenium BP: palaeoenvironmental data and palaeoclimatic framework. Comparison with another previous event during the LGM. Poster for CoForChange presented at Colloque de l’Académie des Sciences, Paris, March 12. Scholar
Maley, J., 2012b. The fragmentation of the African rain forests during the third millenium BP: palaeoenvironmental data and palaeoclimatic framework. Comparison with another previous event during the LGM. In Lézine A.-M. et al. (Eds.), Poster for CoForChange presented at Colloque de l’Académie des Sciences, Paris, March 12. Scholar
Maley, J., Brenac, P., 1998. Vegetation dynamics, palaeoenvironments and climatic changes in the forests of West Cameroon during the last 28,000 years BP. Review of Palaeobotany and Palynology 99, 157187.CrossRefGoogle Scholar
Maley, J., Chepstow-Lusty, A., 2001. Elaeis guineensis Jacq. (oil palm) fluctuations in central Africa during the late Holocene: climate or human driving forces for this pioneering species? Vegetation History and Archaeobotany 10, 117120.CrossRefGoogle Scholar
Maley, J., Doumenge, C., 2012. The transgressive behaviour of the African rain forests during the last centuries. Poster for CoForChange presented at Colloque de l’Académie des Sciences, Paris, March 12. Scholar
Maley, J., Elenga, H., 1993. Le rôle des nuages dans l'évolution des paléoenvironnements montagnards de l’Afrique tropicale. Veille Climatique Satellitaire 46, 5163.Google Scholar
Maley, J., Giresse, P., 1998. Etude d’un niveau argileux organique du Mayombe (Congo occidental) riche en pollens d’Elaeis guineensis et daté d’environ 2800 ans BP. Implications pour les paléoenvironnements de l’Afrique centrale. In Bilong, P., Vicat, J.P. (Eds.), Géosciences au Cameroun. Publications GEOCAM 1. University of Yaoundé Press, Yaoundé, Cameroon, pp. 7784.Google Scholar
Maley, J., Giresse, P., Doumenge, C., Favier, C., 2012. Comment on “Intensifying Weathering and Land Use in Iron Age Central Africa”, by Bayon et al., 2012. Science 337, 1040.Google Scholar
Maley, J., Giresse, P., Favier, C., Doumenge, C., 2014. Comment on “Geochronological arguments for a close relationship between surficial formation profiles and environmental crisis (c. 3000–2000 BP) in Gabon (Central Africa)”, by D. Thiéblemont et al., 2013. Comptes Rendus Geoscience 346, 200202.CrossRefGoogle Scholar
Maley, J., Vernet, R., 2015. Populations and climatic evolution in north tropical Africa from the end of the Neolithic to the dawn of the modern era. African Archaeology Review 32, 179232.CrossRefGoogle Scholar
Maley, J., Willis, K., 2010. Did a savanna corridor open up across the Central African forests 2500 years ago? CoForChange (accessed December 20, 2016). Scholar
Malounguila-Nganga, D., Giresse, P., Boussafir, M., Miyouna, T., 2017. Late Holocene swampy forest of Loango Bay (Congo): sedimentary environments and organic matter deposition. Journal of African Earth Sciences 134, 419434.CrossRefGoogle Scholar
Mayaux, P., Richards, T., Janodet, E., 1999. A vegetation map of Central Africa derived from satellite imagery. Journal of Biogeography 25, 353366.CrossRefGoogle Scholar
Morin-Rivat, J., Fayolle, A., Gillet, J.F., Bourland, N., Gourlet-Fleury, S., Oslisly, R., Bremond, L., et al. 2014. New evidence of Human activities during the Holocene in the Lowland Forests of the Northern Congo Basin. Radiocarbon 56, 209220.CrossRefGoogle Scholar
Mullenders, W., 1956. The phytogeographical elements and groups of the Kaniama District (High Lomani, Belgian Congo) and the analysis of the vegetation. Webbia 11, 497517.CrossRefGoogle Scholar
Neumann, K., Bostoen, K., Höhn, A., Kahlheber, S., Ngomanda, A.B., 2012a. First farmers in Central African rainforest: a view from southern Cameroon. Quaternary International 249, 5362.CrossRefGoogle Scholar
Neumann, K., Eggert, M., Oslisly, R., Clist, B., Denham, T., De Maret, P., Ozainne, S., et al.. 2012b. Comment on “Intensifying Weathering and Land Use in Iron Age Central Africa”, by Bayon et al., 2012. Science 337, 1040.CrossRefGoogle Scholar
Neupane, N., 2016. The Congo Basin zonal overturning circulation. Advances in Atmospheric . Science 33, 116.Google Scholar
Ngomanda, A., Chepstow-Lusty, A., Makaya, M., Schevin, P., Maley, J., Fontugne, M., Oslisly, R., Rabenkogo, N., Jolly, D., 2005. Vegetation changes during the past 1300 years in western equatorial Africa: a high-resolution pollen record from Lake Kamalété, Lopé Réserve, Central Gabon. The Holocene 15, 10211031.CrossRefGoogle Scholar
Ngomanda, A., Neumann, K., Schweitzer, A., Maley, J., 2009. Seasonality change and the third millenium BP rainforest crisis in southern Cameroon (Central Africa). Quaternary Research 71, 307318.CrossRefGoogle Scholar
Nicholson, S.E., 2000. The nature of rainfall variability over Africa on time scales of decades to millenia. Global and Planetary Change 26, 137158.CrossRefGoogle Scholar
Nicholson, S.E., Entekhabi, D., 1987. Rainfall variability in equatorial and southern Africa: relationships with Sea Surface Temperatures along the Southwestern coast of Africa. Journal of Climate and Applied Meteorology 26, 561578.2.0.CO;2>CrossRefGoogle Scholar
Nicholson, S.E., Grist, J.P., 2003. The seasonal evolution of the atmospheric circulation over West Africa and equatorial Africa. Journal of Climate 16, 10131030.2.0.CO;2>CrossRefGoogle Scholar
Paulissen, E., Vermeersch, P.M., 1987. Earth, man and climate in the Egyptian Nile valley during the Pleistocene. In Close, A.E. (Ed.), Prehistory of Arid Africa. Essays in Honor of Fred Wendorf. Southern Methodist University Press, Dallas, pp. 2967.Google Scholar
Philander, S.G., 1986. Unusual conditions in the tropical Atlantic Ocean in 1984. Nature 322, 236238.CrossRefGoogle Scholar
Philippon, N., Lapparent, B.D, Gond, V., Sèze, G., Martiny, N., Camberlin, P., Cornu, G., et al. 2016. Analysis of the diurnal cycles for a better understanding of the mean annual cycle of forests greenness in Central Africa. Agriculture and Forest Meteorology 83, 8194.CrossRefGoogle Scholar
Pokam, W.M., Bain, C.L., Chadwick, R.S., Graham, R., Sonwa, D.J., Kamga, F.M., 2014. Identification of processes driving low-level westerlies in West Equatorial Africa. Journal of Climate 27, 42454262.CrossRefGoogle Scholar
Reynaud-Farrera, I., Maley, J., Wirrmann, D., 1996. Végétation et climat dans les forêts du sud-ouest Cameroun depuis 4770 ans BP: analyse pollinique des sédiments du lac Ossa. Comptes Rendus de l’Académie de . Sciences 322, 749755.Google Scholar
Runge, J., 1996. Palaeoenvironmental interpretation of geomorphological and pedological studies in the rain forest “core-areas” of eastern Zaire (Central Africa). South African Geographical Journal 78, 9197.CrossRefGoogle Scholar
Runge, J., 2001. On the age of stone-lines and hillwash sediments in the eastern Congo basin: palaeoenvironmental implications. Palaeoecology of Africa 27, 1936.Google Scholar
Runge, J., Sangen, M., Neumer, M., Eisenberg, J., Becker, E., 2014. Late Quaternary valley and slope deposits and their palaeoenvironmental significance in the Upper Congo Basin, Central Africa. Palaeoecology of Africa 32, 5390.Google Scholar
Rycroft, M.J., Israelsson, S., Price, C., 2000. The global atmospheric circuit, solar activity and climate change. Journal of Atmospheric and Solar-Terrestrial Physics 62, 15631576.CrossRefGoogle Scholar
Salzmann, U., Hoelzmann, P., 2005. The Dahomey Gap: an abrupt climatically induced rain forest fragmentation in West Africa during the late Holocene. The Holocene 15, 190199.CrossRefGoogle Scholar
Schefuß, E., Schouten, S., Schneider, R.R., 2005. Climatic controls on central African hydrology during the past 20,000 years. Nature 437, 10031006.CrossRefGoogle ScholarPubMed
Shanahan, T.M., Beck, J.W., Overpeck, J.T., McKay, N.P., Pigati, J.S., Peck, J.A., Scholz, C.A., Heil, C.W., King, J., 2012. Late Quaternary sedimentological and climate changes at Lake Bosumtwi Ghana: new constraints from laminae analysis and radiocarbon age modeling. Palaeogeography, Palaeoclimatology, Palaeoecology 361, 4960.CrossRefGoogle Scholar
Shanahan, T.M., Overpeck, J.T., Wheeler, C.W., Beck, J.W., Pigati, J.S., Talbot, M.R., Scholz, C.A, Peck, J., King, J.W., 2006. Paleoclimatic variations in West Africa from a record of late Pleistocene and Holocene lake level stands of Lake Bosumtwi, Ghana. Palaeogeography, Palaeoclimatology, Palaeoecology 242, 287302.CrossRefGoogle Scholar
Singh, D., Gopalakrishnan, V., Singh, R.P., Kamra, A.K., Singh, S., Pant, V., Singh, A.K., 2007. The atmospheric global electric circuit: an overview. Atmospheric Research 84, 91110.CrossRefGoogle Scholar
Soula, S., Kigotsi Kasereka, J., Georgis, J.F., Barthe, C., 2016. Lightning climatology in the Congo Basin. Atmospheric Research 178–179, 304319.CrossRefGoogle Scholar
Stager, J.C., Cumming, B., Meeker, L., 1997. A high-resolution 11,400-yr diatom record from Lake Victoria, East Africa. Quaternary Research 47, 8189.CrossRefGoogle Scholar
Talbot, M.R., Johannessen, T., 1992. A high resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth and Planetary Science Letters 110, 2337.CrossRefGoogle Scholar
Thiéblemont, D., Flehoc, C., Ebang-Obiang, M., Rigollet, C., Prian, J.P, Prognon, F., 2013. Geochronological arguments for a close relationship between surficial formation profiles and environmental crisis (c. 3000–2000 BP) in Gabon (Central Africa)”. Comptes Rendus Geoscience 345, 272283.CrossRefGoogle Scholar
Torti, S.D., Coley, P.D., Kursar, T.A., 2001. Causes and consequences of monodominance in tropical lowland forests. The American Naturalists 157, 151153.CrossRefGoogle ScholarPubMed
Toth, L.T., Aronson, R.B., Vollmer, S.V., Hobbs, J.W., Urrego, D.H., Cheng, H., Enochs, I.C., Combosch, D.J., Van Woesik, R., Macintyre, I.G., 2012. ENSO drove 2500-year collapse of eastern Pacific coral reefs. Science 337, 8184.CrossRefGoogle ScholarPubMed
Trenberth, K.E, Shea, D.J., 2005. Relationships between precipitation and surface temperature. Geophysical Research Letters 32 Scholar
Tsalefac, M., Hiol Hiol, F., Mahé, G., Laraque, A., Sonwa, D., Sholte, P., Pokam, W., et al. 2015. Climate of Central Africa: past, present and future. In de Wasseige, C., Tadoum, M., Eba’a Atyi, R., Doumenge, C. (Eds.), The Forests of the Congo Basin: Forests and Climate Change. Weyrich, Belgium, pp. 3752.Google Scholar
Tshibamba, J.M., 2016. Approche pédoanthracologique pour l'étude de l’origine des peuplements à Pericopsis elata (Harms) Ven Meeuwen dans la Réserve Forestière de Yoko en République Démocaritque du Congo (RDC). PhD dissertation, University of Kisangani, Kisangani, Democratic Republic of the Congo.Google Scholar
Vincens, A., Buchet, G., Servant, M., 2010. Vegetation response to the “African Humid Period” termination in Central Cameroon (7° N)—new pollen insight from Lake Mbalang. Climate of the Past 6, 281294.CrossRefGoogle Scholar
Vincens, A., Schwartz, D., Bertaux, J., Elenga, H., De Namur, C., 1998. Late Holocene climatic changes in western equatorial Africa inferred from pollen from Lake Sinnda, southern Congo. Quaternary Research 50, 3445.CrossRefGoogle Scholar
Vleminckx, J., Morin-Rivat, J., Biwolé, A.B., Dainou, K., Gillet, J.F., Doucet, J.L., Drouet, T., Hardy, O.J., 2014. Soil charcoal to assess the impacts of past human disturbances on tropical forests. PloS One 9, e108121. ScholarPubMed
Weldeab, S., Schneider, R., Müller, P., 2007. Comparison of Mg/Ca- and alkenone-based sea surface temperature estimates in the fresh water-influenced Gulf of Guinea, eastern equatorial Atlantic. Geochemistry, Geophysics, Geosystems 8, 116.CrossRefGoogle Scholar
Weninger, B., Jöris, O., 2008. A radiocarbon age calibration curve for the last 60 ka: The Greenland-Hulu U/Th timescale and its impact on understanding the Middle to Upper Paleolithic transition in Western Eurasia. Journal of Human Evolution 55, 772781.CrossRefGoogle ScholarPubMed
White, F., 1979. The Guineo-Congolian Region and its relationships to other phytocoria. Bulletin du Jardin Botanique National de Belgique 49, 1155.CrossRefGoogle Scholar
Williams, M., Talbot, M., Aharon, P., Salaam, Y.A., Williams, F., Brendeland, K.I., 2006. Abrupt return of the summer monsoon 15,000 years ago: new supporting evidence from the lower White Nile valley and Lake Albert. Quaternary Science Reviews 25, 26512665.CrossRefGoogle Scholar
Wilson, A.M., Jetz, W., 2016. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Bio 14, e1002415. ScholarPubMed
Wotzka, H.P., 1995. Studien zur Archäologie des zentralafrikanischen Regenwaldes: Die Keramik des Inneren Zaire-Beckens und ihre Stellung im Kontext der Bantu-Expansion, Africa Praehistorica, Monographien zur Archäologie und Umwelt Afrika. Heinrich Barth Institut, Köln.Google Scholar
Wu, M., Schurgers, G., Rummukainen, M., Smith, B., Samuelsson, P., Jansson, C., Siltberg, J., May, W., 2016. Vegetation-climate feedbacks modulate rainfall patterns in Africa under future climate change. Earth System Dynamics 7, 627647.CrossRefGoogle Scholar
Zelazowski, P., Malhi, Y., Huntingford, C., Sitch, S., Fisher, J.B., 2011. Changes in the potential distribution of humid tropical forests on a warmer planet. Philosophical Transactions of the Royal Society A 369, 137160.CrossRefGoogle ScholarPubMed
Zhou, L., Tian, Y., Myneni, R.B., Ciais, P., Saatchi, S., Liu, Y., Piao, S., Chen, H., 2014. Widespread decline of Congo rainforest greenness in the past decade. Nature 509, 8690.CrossRefGoogle ScholarPubMed
Supplementary material: File

Maley et al supplementary material

Maley et al supplementary material 1

Download Maley et al supplementary material(File)
File 16 KB