Skip to main content Accessibility help
×
Home
Hostname: page-component-6c8bd87754-trcsx Total loading time: 0.204 Render date: 2022-01-18T11:49:40.243Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

The Holstein Interglaciation: Time-Stratigraphic Position and Correlation to Stable-Isotope Stratigraphy of Deep-Sea Sediments

Published online by Cambridge University Press:  20 January 2017

Michael Sarnthein
Affiliation:
Geologisch-Palaeontologisches Institut der Universitaet Kiel, D-2300 Kiel, Federal Republic of Germany
Helmut E. Stremme
Affiliation:
Bartelsallee 14 D-2300 Kiel, Federal Republic of Germany
Augusto Mangini
Affiliation:
Institut für Umweltphysik, Universitaet Heidelberg, D-6900 Heidelberg, Federal Republic of Germany

Abstract

Marine molluscan shells from para-type and other localities of the Holsteinian interglaciation were dated by Th/U and the electron spin resonance (ESR) method to more than 350,000 and 370,000 yr B.P., beyond the limit of Th/U dating. The high age estimate is corroborated by a K/Ar age of 420,000 yr B.P. determined from volcanic ash near the base of the Ariendorf paleosol in the Middle Rhine valley believed to be a pedostratigraphic equivalent of the Holsteinian. Shells from the Herzeele marine unit III, an equivalent of the Wacken (Dömnitz) warm stage in northern France and subsequent to the Holsteinian, revealed ages between 300,000 and 350,000 yr B.P. A correlation of these two warm stages with marine oxygen-isotope stages 11 and 9 on the SPECMAP and CARTUNE time scales is suggested. From the benthic oxygen-isotope record one may infer that no exceptionally high global sea-level rise corresponds to the large transgressions of the Holstein Sea in northern Germany. Therefore, a significant proportion of the transgression was probably the result of an unusually large local glacial-isostatic depression caused by the extreme buildup of ice during the preceding Elster glaciation (stage 12). According to the deep-sea record, it lasted approximately 50% longer than the subsequent cold stage 10. The outstanding soil formation with Braunlehm and the well-developed thermal optimum of the Holsteinian are tentatively related to a phase of minimum sea-ice cover in the Norwegian-Greenland Sea, as deduced from long benthic carbon-isotope records from the central Atlantic.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, D.P.(1984).The Clear Lake, California, pollen record and its implications for the astronomical theory International Symposium on Milankowitch and Climate Lamont-Doherty Geological Observatory Palisades, N.Y Dec. 1982, AbstractsGoogle Scholar
Beard, J.H. Sangree, J.B. Smith, L.A.(1982).Quaternary chronology, paleoclimate, depositional sequences, and eustatic cycles American Association of Petroleum Geologists Bulletin 66 2 158 169 Google Scholar
Bell, W.T.(1977).Thermoluminescence dating: Revised dose rate dating Archeometry 19 99 100 CrossRefGoogle Scholar
Bonsinski, G. Brunnacker, K. Turner, E.(1983).Ein Siedlungsbefund des frühen Mittelpaleolithikums von Ariendorf, Kr. Neuwied Archäologisches Korrespondenzblatt 13 157 169 Google Scholar
Broecker, W.S. Thurber, D.L.(1965). 230Th/234U dating of coral and oolites from Florida and the Bahamas Science 149 58 CrossRefGoogle Scholar
Brunnacker, K. Boenigk, W. Dolezalek, B. Kempf, E.K. Koči, A. Mentzen, H. Rad, M.R. Winter, K.-P.(1978).Die Mittelterrassen am Niederrhein zwischen Köln and Mönchengladbach Fortschr. der Geologie von Rheinland u. Westfalen 28 277 324 Google Scholar
Brunnacker, K. Jäger, K.-D. Hennig, G.J. Preuss, J. Grün, R.(1983).Radiometrische Untersuchungen zur Datierung Mitteleuropäischer Travertinvorkommen Ethnographisch-Archäologische Zeitschrift, Berlin 24 217 266 Google Scholar
Brunnacker, K. Löscher, M. Tillmanns, W. Urban, B.(1982).Correlation of the Quaternary terrace sequence in the Lower Rhine Valley and northern Alpine foothills of Central Europe Quaternary Research 18 2 152 173 CrossRefGoogle Scholar
Cepek, A.G.(1975).Die glazialen Erscheinungen und Ablagerungen des Quartärs an der Struktur Rüdersdorf bei Berlin 100 Jahre Glazialtheorie im Gebiet der Skandinavischen Vereisungen. Gesellschaft für Geologische Wissenschaften DDR.17 45 Exkursionsfuhrer zur Tagg. 3.−7, Nov. 1975 in BerlinGoogle Scholar
Cepek, A.G. Erd, K.(1982).Classification and Stratigraphy of the Holsteinian and Saalian Complex in the Quaternary of the German Democratic Republic 50 57 (Prague)Google Scholar
Duphorn, K. Grube, F. Meyer, K.-D. Streif, H. Vinken, R.(1973).Area of the Scandinavian glaciation Eiszeitalter und Gegenwart 23/24 222 250 Google Scholar
Duplessy, J.-C. Shackleton, N.J. Matthews, R.K. Prell, W. Ruddiman, W.F. Caralp, M. Hendy, C.H.(1984). 13C record of benthic foraminifera in the last Interglacial Ocean: Implications for the carbon cycle and the global deep water circulation Quaternary Research 21 2 225 243 CrossRefGoogle Scholar
Erd, K.(1970).Pollen-analytical classification of the middle Pleistocene in the German Democratic Republic Paleogeography, Paleoclimatology, Paleoecology 8 2 3; 120 145 CrossRefGoogle Scholar
Felix-Henningsen, P.(1984).Paläoböden und Pedostratigraphie am Roten Kliff von Sylt Degens, E.T. Exkursionsführer Erdgeschichte des Nordsee- und Ostseeraumes Geologisch-Paläontologisches Institut der Universität Hamburg Google Scholar
Frechen, J. Lippolt, H.J.(1965).Kalium-Argon Daten zum Alter des Laacher Vulkanismus der Rheinterrassen und der Eiszeiten Eiszeitalter und Gegenwart 16 5 30 Google Scholar
Fuhrmann, R.(1976).Die stratigraphische Stellung der Lösse in Mittel- und Westsachsen Zeitschrift für Geologische Wissenschaften 4/9 1241 1270 Google Scholar
Fuhrman, U.(1983).Kalium-Argon-Untersuchungen an Neogenen Vulkaniten des Rheinischen Schildes Dissertation Universität Heidelberg Google Scholar
Grün, R. Brunnacker, K. Hennig, G.J.(1982). 230Th/234U-Daten mittel- und jungpleistozäner Travertine im Raum Stuttgart Jahresbericht und Mitteilungen des oberrheinischen geologischen Vereins, Neue Folge 64 201 211 CrossRefGoogle Scholar
Hennig, G.J. Grün, R.(1983).ESR dating in Quaternary geology Quaternary Science Reviews 2 157 238 CrossRefGoogle Scholar
Hennig, G.J. Grün, R. Brunnacker, K. Pesci, M.(1983). 230Th/234U sowie ESR Altersbestimmungen einiger Travertine in Ungarn Eiszeitalter und Gegenwart 33 9 19 Google Scholar
Herterich, K. Sarnthein, M.(1984).Brunhes time scale: Tuning by rates of calcium carbonate dissolution and cross spectral analyses with solar insolation Berger, A. Imbrie, J. Milankowitch and Climate Reidel Dordrecht 446 466 Part 1Google Scholar
Ikeya, M.(1975).Dating a stalactite by electron paramagnetic resonance Nature (London) 255 48 50 CrossRefGoogle Scholar
Imbrie, J. Hayes, J.D. Martinson, D.G. McIntyre, A. Mix, A.C. Morley, J.J. Pisas, N.G. Prell, W.L. Shackleton, N.J.(1984).The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record Berger, A. Imbrie, J. Milankowitch and Climate Reidel Dordrecht 269 305 Google Scholar
Kaufman, A. Broecker, W.S. Ku, T.L. Thurber, D.L.(1971).The status of U series of mollusk dating Geochimica et Cosmochimica Acta 35 1155 1183 CrossRefGoogle Scholar
Kellogg, T.B.(1977).Paleoclimatology and paleooceanography of the Norwegian and Greenland Seas: The last 450,000 years Marine Micropaleontology 2 235 249 CrossRefGoogle Scholar
Kroopnick, P.(1980).The distribution of 13C in the Atlantic Ocean Earth and Planetary Science Letters 49 469 484 CrossRefGoogle Scholar
Kukla, G.(1975).Loess stratigraphy of central Europe Butzer, K.W. Isaac, G.Ll. After the Australopithecines. Burg Wartenstein Symposium. Vol. 58 Mouton Press Hawthorne, N.Y 99 192 Google Scholar
Kukla, G.(1978).The classical European glacial stages: Correlation with deep-sea sediments Transactions of the Nebraska Academy of Science 6 57 93 Google Scholar
Kukla, J.(1969).Die zyklische Entwicklung und die absolute Datierung der Löss-Serien Demek, J. Kukla, J. Periglazialzone, Löss und Paläolithikum der Tschechoslovakei Tschechoslowakische Akademie der Wissenschaften Brno 79 95 Google Scholar
Lally, A.E.(1982).Chemical procedures Ivanovich, M. Harmon, Russel M. Uranium Series Disequilibrium: Application to Environmental Problems Oxford Univ. Press London/New York 79 106 Google Scholar
Lautridou, J.-P. Monnier, J.L. Morzadec-Kerfourn, M.T. Sommé, J. Tuffrean, A.(1983).The Subdivisions of the Pleistocene of Northern France Stratigraphy, Paleogeography, Paleolithic International Geological Correlation Project 73/1/24, Re- 148-204 (Prague)Google Scholar
Macoun, J.(1982).The Significance of the North Moravian Pleistocene for Stratigraphical correlation of the Central European quaternary International Geological Correlation Project 73/1/24 198 204 (Prague)Google Scholar
Mangini, A. Sonntag, C.(1977).Pa-231 dating of deep sea cores via Th-227 counting Earth and Planetary Science Letters 37 251 256 CrossRefGoogle Scholar
Menke, B.(1980).Wacken, Elster-Glazial, marines Holstein-Interglazial und Wacken-Warmzeit. Quartär- Exkursionen in Schleswig-Holstein International Geological Correlation Project 7th Session 25 35 (Kiel)Google Scholar
Menke, B. Behre, K.-K.(1973).History of vegetation and biostratigraphy Eiszeitalter und Gegenwart 23/24 251 267 Google Scholar
Penck, A.(1922).Die Terassen des Isartales in den Alpen Sonderberichte der preussischen Akademie der Wissenschaften, Physikalisch-Mathematische Klasse Google Scholar
Pollard, D.(1984).Ice-age simulations with orbitally forced ice-sheet and climate models Berger, A. Imbrie, J. Milankowitch and Climate Reidel Dordrect 541 564 Part 2CrossRefGoogle Scholar
Radtke, U. Mangini, A. Grün, R.(1986).ESR dating of marine fossil shells Nuclear Tracks in pressGoogle Scholar
Ruddiman, W.F. McIntyre, (1981).Oceanic mechanisms for amplification of the 23,000 year ice-volume cycle Science 212 617 627 CrossRefGoogle ScholarPubMed
Sarnthein, M. Erlenkeuser, H. V. Grafenstein, R. Schröder, C.(1984).Stable-isotope stratigraphy for the last 750,000 years: “Meteor” core 13519 from the eastern equatorial Atlantic “Meteor” Forschungs Ergebnisse C 38 9 24 Google Scholar
Shackleton, N.J. Opdyke, N.D.(1973).Oxygen-isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-238: Oxygen-isotope temperatures and ice volumes on a 105 Years Scale Quaternary Research 3 39 55 CrossRefGoogle Scholar
Shackleton, N.J. Opdyke, N.D.(1976).Oxygen-isotope and paleomagnetic stratigraphy of Pacific core V28-239 late Pliocene to latest Pleistocene Geological Society of America Memoir 145 449 464 CrossRefGoogle Scholar
Sibrava, V.(1977).Zur Stellung der Tschechoslovakei im Korrelierungssystem des Pleistozäns in Europa Antropozoikum A 8 217S Google Scholar
Sommé, J. Paepe, R. Baeteman, C. Beyens, L. Cunat, N. Geeraerts, R. Hardy, A.F. Hus, J. Juvigné, E. Mathieu, L. Thorez, J. Vanhoorne, R.(1978).La formation d'Herzeele: Un nouveau stratotype du Pléistocene moyen marin de la mer du Nord Bulletin de l'Association française pour l'etude du Quaternaire 15 81 149 CrossRefGoogle Scholar
Stephan, H.J.(1981).Eemzeitliche Verwitterungs-horizonte Schleswig-Holsteins Verhandlungen des naturwissenschaftlichen Vereins Hamburg 24 2 161 175 Google Scholar
Stremme, H.E.(1982).Correlation of the Quaternary Paleosols 208 217 (Kyoto)Google Scholar
Urban, B.(1983).Biostratigraphic correlation of the Kärlich Interglazial, northwestern Germany Boreas 12 83 90 CrossRefGoogle Scholar
Wiegank, F.(1977).Paläomagnetische Datierung und Korrelation paläoklimatischer Ereignisse des Mittel- und Jungpleistozäns Zeitschrift für Geologische Wissenschaften 5 705 715 Google Scholar
Windheuser, H. Brunnacker, K.(1978).Zeitstellung und Tephrostratigraphie des quartären Osteifel-Vulkanismus Geologisches Jahrbuch Hessen 106 261 271 Google Scholar
Windheuser, H. Meyer, W. Brunnacker, K.(1982).Verbreitung, Zeitstellung and Ursachen des quartären Vulkanismus in der Osteifel Zeitschrift für Geomorphologie Neue Folge Supplement Band 42 177 194 Google Scholar
Woldstedt, P.(1965).Das Eiszeitalter Vol. 3 Enke Verlag Stuttgart Google Scholar
Woldstedt, P. Duphorn, K.(1974).Nord-deutschland und angrenzende Gebiete im Eiszeitalter Koehler Verlag Stuttgart Google Scholar
Zagwijn, W.H.(1978).A macroflora of Holsteinian age from the northern part of the Netherlands Review of Paleobotany and Palynology 26 243 248 CrossRefGoogle Scholar
Zahn, R. Winn, K. Sarnthein, M.(1986).Benthic foraminiferal δ13C and accumulation rates of organic carbon. Uvigerina peregrina group and Cibicidoides wuellerstorfi Paleoceanography 1 in pressCrossRefGoogle Scholar
Zeller, E.J. Levy, P.W. Mattern, P.L.(1967).Geological dating by electron spin resonance Proceedings of the Symposium on Radioactive Dating and Low Level Counting IAEA Vienna 531 540 Google Scholar
53
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Holstein Interglaciation: Time-Stratigraphic Position and Correlation to Stable-Isotope Stratigraphy of Deep-Sea Sediments
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The Holstein Interglaciation: Time-Stratigraphic Position and Correlation to Stable-Isotope Stratigraphy of Deep-Sea Sediments
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The Holstein Interglaciation: Time-Stratigraphic Position and Correlation to Stable-Isotope Stratigraphy of Deep-Sea Sediments
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *